Research Article
BibTex RIS Cite

INFUSION FROM C. COGGYGRIA SCOP. LEAVES ON THE HEPATIC OXIDATIVE STRESS IN MICE WITH DEXTRAN SODIUM SULPHATE (DSS)-INDUCED ULCERATIVE COLITIS

Year 2025, Volume: 8 Issue: 1, 53 - 58, 04.03.2025
https://doi.org/10.26650/JARHS2025-1497988

Abstract

Objective: Since free radicals play a crucial role in ulcerative colitis (UC)- assotiated liver manifestations, antioxidants of plant origin have been proposed as potential therapeutic agents to counteract liver damage. This study aimed to elucidate the ameliorative effect of the aqueous infusion of the C. coggygria leaves (CCLAI) in comparison with a mesalamine in alleviating the oxidative stress in the liver of mice with DSS-induced UC.

Material and Methods: Two different doses of CCLAI (4% and 6%) or mesalamine (250 mg/kg body weight) were administered by oral gavage to C57BL/6 male mice once a day for 7 consecutive days. UC was induced with 3% DSS in drinking water for 5 days, except the normal and plant control groups that had access to water only.

Results: No statistical difference between all the groups was observed in the activities of AST and ALT, hepatic damage markers, suggesting that the oxidative alterations were not sufficient to cause liver damage, although oxidative stress occurred. The elevated activities of antioxidant markers (SOD, CAT, GR, GPx, GST) and increased GSH and NO levels in the colitis groups compared with the normal group may represent an initial defence mechanism against oxidative stress. These results indicate that CCLAI may attenuate oxidative stress, as demonstrated by decreased MDA levels and MPO activity and reversed levels of oxidative stress parameters towards the value of normal controls.

Conclusion: Our study provided evidence that CCLAI can reduce oxidative stress probably by scavenging ROS and modulating the oxidant/antioxidant balance in hepatic tissues.

References

  • Le Berre C, Honap S, Peyrin-Biroulet L. Ulcerative colitis. Lancet 2023;402:571-84. google scholar
  • Vargas-Robles H, Castro-Ochoa KF, Citalân-Madrid AF, Schnoor M. Beneficial effects of nutritional supplements on intestinal epithelial barrier functions in experimental colitis models in vivo. World J Gastroenterol 2019;25(30):4181-98. google scholar
  • Navaneethan K. Hepatobiliary manifestations of ulcerative colitis: an example of gut-liver crosstalk. Gastroenterol Rep2014;2(3):193-200. google scholar
  • Moura FA, de Andrade KQ, de Araujo ORP, Nunes-Souza V, Santos JCF, Rabelo LA, et al. Colonic and hepatic modulation by lipoic acid and/or N-acetylcysteine supplementation in mild ulcerative colitis induced by dextran sodium sulfate in rats. Oxid Med Cell Longev 2016;2016:4047362. google scholar
  • Martins ASP, de Andrade KQ, de Araujo ORP, da Conceiçao GCM, Gomes AS, Goulart MOF, et al. Extraintestinal manifestations in induced colitis: controversial effects of N-acetylcysteine on colon, liver, and kidney. Oxid Med Cell Longev 2023;2023:8811463. google scholar
  • Farombi EO, Adedara IA, Awoyemi OV, Njoku CR, Micah GO, Esogwa CU, et al. Dietary protocatechuic acid ameliorates dextran sulphate sodium-induced ulcerative colitis and hepatotoxicity in rats. Food Funct 2016;7(2):913-21. google scholar
  • Rtibi K, Selmi S, Jabri MA, El-Benna J, Amri M, Marzouki L, et al. Protective effect of Ceratonia siliqua L. against a dextran sulfate sodium-induced alterations in liver and kidney in rat. J Med Food 2016;19(9):882-9. google scholar
  • Ozal-Coskun C, Arda P, Ozsoy N, Uguden A. Some histone deacetylase inhibitors protect against dextran sulfate sodium-induced hepatotoxicity in mice. Istanbul J Pharm, 2024 (under publication). google scholar
  • Triantafillidis JK, Triantafyllidi A, Vagianos C, Papaloisc A. Favorable results from the use of herbal and plant products in infl ammatory bowel disease: evidence from experimental animal studies. Ann Gastroenterol 2016;29:268-81. google scholar
  • Matic S, Stanic S, Mihailovic M, Bogojevic D. Cotinus coggygria Scop.: An overview of its chemical constituents, pharmacological and toxicological potential. Saudi J Biol Sci 2016;23:452-61. google scholar
  • Eftimov M, Pavlov D, Nashar M, Ivanova D, Tzaneva M, Valcheva-Kuzmanova S. Effects of aqueous ınfusion from Cotinus coggygria leaves on behavior and lipid peroxidatıon in rats. Farmacia 2016;64(1):67-71. google scholar
  • Ozsoy N, Yilmaz-Ozden T, Serbetci T, Kultur S, Akalin E. Antioxidant, anti-inflammatory, acetylcholinesterase and thioredoxin reductase inhibitory activities of nine selected Turkish medicinal plants. Indian J Tradit Knowl 2017;16(4):553-61. google scholar
  • Matic S, Stanic S, Bogojevic D, Vidakovic M, Grdovic N, Arambasic J, et al. Exract of the plant Cotinus coggrygria Scop. attenuates pyrogallol-indiced hepatic oxidative stress in Wistar rats. Can J Physiol Pharmacol 2011;89(6):401-11. google scholar
  • Matic S, Stanic S, Bogojevic D, Vidakovic M, Grdovic N, Dinic S, et al. Methanol extract from the stem of Cotinus coggygria Scop., and its major bioactive phytochemical constituent myricetin modulate pyrogallol-induced DNA damage and liver injury. Mutat Res Genet Toxicol Environ Mutagen 2013;755:81-9. google scholar
  • Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol 1978;52:302-10. google scholar
  • Aruoma OI, Halliwell B, Hoey BM, Butler J. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 1989;6(6):593-7. google scholar
  • Aebi H. Catalases. İn: Bergmeyer HU (Ed.). Methods of Enzymatic Analysis. New York: Academic Press; 1974.p.673-84. google scholar
  • Carlberg I, Mannervik B. Glutathione reductase. Methods Enzymol 1985;113:484-90. google scholar
  • Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 1976;71:952-8. google scholar
  • Habig W, Jacoby WB. Assays for differentation of glutathione-S-transferases. Methods Enzymol 1981;77:398-405. google scholar
  • Hillegass LM, Griswold DE, Brickson B, Albrightson-Winslow C. Assessment of myeloperoxidase activity in whole rat kidney. J Pharmacol Methods 1990;24:285-95. google scholar
  • Anderson M. Determination of glutathione disulfide in biological samples. Methods Enzymol 1985;113:548-55. google scholar
  • Fiddler KM. Collaborative study of modified AOAC method of analysis of nitrite in meat and meat products. J Assoc Off Anal Chem 1977;60:594-8. google scholar
  • Gaspar R, Branco CC, Macedo G. Liver manifestations and complications in inflammatory bowel disease: a review. World J. Hepatol 2021;13:1956-67. google scholar
  • Trivedi PP, Jena GB. Ulcerative colitis-induced hepatic damage in mice: studies on inflammation, fibrosis, oxidative DNA damage and GST-P expression. Chem Biol Interact 2013;201(1-3):19-30. google scholar
  • Piechota-Polanczyk A, Fichna J. Review article: the role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases. Naunyn-Schmiedeberg’s Arch Pharmacol 2014;387:605-20. google scholar
  • Fujii J, Homma T, Osaki T. Superoxide radicals in the execution of cell death. Antioxidants 2022;11:501-32. google scholar
  • Tian T, Wang Z, Zhang J. Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxid Med Cell Longev 2017;4535194:1-18 google scholar
  • Wang Y, Chen Y, Zhang X, Lu Y, Chen H. New insights in intestinal oxidative stress damage and the health intervention effects of nutrients: A review. J Funct Foods 2020;75:104248. google scholar
  • Kolios G, Valatas V, Ward SG. Nitric oxide in inflammatory bowel disease: A universal messenger in an unsolved puzzel. Immunology 2004;113:427-37. google scholar
  • Mancini S, Mariani F, Sena P, Benincasa M, Roncucci L. Myeloperoxidase expression in human colonic mucosa is related to systemic oxidative balance in healthy subjects. Redox Rep 2017;22(6):399-407. google scholar

C. COGGYGRİA SCOP. YAPRAKLARINDAN ELDE EDİLEN SULU İNFÜZYONUN DEKSTRAN SODYUM SÜLFAT (DSS) İLE İNDÜKLENMİŞ ÜLSERATİF KOLİTLİ FARELERDE HEPATİK OKSİDATİF STRES ÜZERİNE ETKİSİ

Year 2025, Volume: 8 Issue: 1, 53 - 58, 04.03.2025
https://doi.org/10.26650/JARHS2025-1497988

Abstract

Amaç: Serbest radikaller ülseratif kolit (ÜK) ile ilişkili karaciğer bulguların da önemli bir rol oynadığından, bitki kökenli antioksidanlar karaciğer hasarına karşı potansiyel terapötik ajanlar olarak önerilmiştir. Bu çalışma nın amacı, C. coggygria yapraklarının sulu infüzyonunun (CCLAI), DSS ile indüklenmiş ÜK’li farelerin karaciğerindeki oksidatif stresi hafifletmede mesalamine kıyasla iyileştirici etkisini aydınlatmaktır.

Gereç ve Yöntemler: İki farklı dozda CCLAI (%4 ve %6) veya mesalamin (250 mg/kg vücut ağırlığı) C57BL/6 erkek farelere oral gavaj yoluyla ardışık 7 gün boyunca günde bir kez verildi. ÜK, sadece su verilen normal ve bitki kontrol grupları haricinde, 5 gün boyunca içme suyunda %3 DSS ile indüklenmiştir.

Bulgular: Karaciğer hasarı belirteçleri olan AST ve ALT aktivitelerinde tüm gruplar arasında istatistiksel bir fark gözlenmemiştir, bu da oksidatif stres oluşmasına rağmen oksidatif değişikliklerin karaciğer hasarına neden olmak için yeterli olmadığını düşündürmektedir. Normal gruba kıyasla kolit gruplarında antioksidan belirteçlerin (SOD, CAT, GR, GPx, GST) aktivitelerinin ve GSH ile NO seviyelerinin artması, oksidatif strese karşı bir ilk savunma mekanizmasını temsil ediyor olabilir. Bu sonuçlar, MDA seviyeleri ve MPO aktivitesinin azalması ile birlikte oksidatif stres parametrelerinin normal kontrol değerlerine doğru gerilemesinin de gösterdiği gibi, CCLAI’nin oksidatif stresi azaltabileceğini düşündürmektedir.

Sonuç: Çalışmamız, CCLAI’nin muhtemelen ROS’u temizleyerek ve hepatik dokulardaki oksidan/antioksidan dengeyi modüle ederek oksidatif stresi azaltabildiğine dair kanıtlar sağlamıştır.

References

  • Le Berre C, Honap S, Peyrin-Biroulet L. Ulcerative colitis. Lancet 2023;402:571-84. google scholar
  • Vargas-Robles H, Castro-Ochoa KF, Citalân-Madrid AF, Schnoor M. Beneficial effects of nutritional supplements on intestinal epithelial barrier functions in experimental colitis models in vivo. World J Gastroenterol 2019;25(30):4181-98. google scholar
  • Navaneethan K. Hepatobiliary manifestations of ulcerative colitis: an example of gut-liver crosstalk. Gastroenterol Rep2014;2(3):193-200. google scholar
  • Moura FA, de Andrade KQ, de Araujo ORP, Nunes-Souza V, Santos JCF, Rabelo LA, et al. Colonic and hepatic modulation by lipoic acid and/or N-acetylcysteine supplementation in mild ulcerative colitis induced by dextran sodium sulfate in rats. Oxid Med Cell Longev 2016;2016:4047362. google scholar
  • Martins ASP, de Andrade KQ, de Araujo ORP, da Conceiçao GCM, Gomes AS, Goulart MOF, et al. Extraintestinal manifestations in induced colitis: controversial effects of N-acetylcysteine on colon, liver, and kidney. Oxid Med Cell Longev 2023;2023:8811463. google scholar
  • Farombi EO, Adedara IA, Awoyemi OV, Njoku CR, Micah GO, Esogwa CU, et al. Dietary protocatechuic acid ameliorates dextran sulphate sodium-induced ulcerative colitis and hepatotoxicity in rats. Food Funct 2016;7(2):913-21. google scholar
  • Rtibi K, Selmi S, Jabri MA, El-Benna J, Amri M, Marzouki L, et al. Protective effect of Ceratonia siliqua L. against a dextran sulfate sodium-induced alterations in liver and kidney in rat. J Med Food 2016;19(9):882-9. google scholar
  • Ozal-Coskun C, Arda P, Ozsoy N, Uguden A. Some histone deacetylase inhibitors protect against dextran sulfate sodium-induced hepatotoxicity in mice. Istanbul J Pharm, 2024 (under publication). google scholar
  • Triantafillidis JK, Triantafyllidi A, Vagianos C, Papaloisc A. Favorable results from the use of herbal and plant products in infl ammatory bowel disease: evidence from experimental animal studies. Ann Gastroenterol 2016;29:268-81. google scholar
  • Matic S, Stanic S, Mihailovic M, Bogojevic D. Cotinus coggygria Scop.: An overview of its chemical constituents, pharmacological and toxicological potential. Saudi J Biol Sci 2016;23:452-61. google scholar
  • Eftimov M, Pavlov D, Nashar M, Ivanova D, Tzaneva M, Valcheva-Kuzmanova S. Effects of aqueous ınfusion from Cotinus coggygria leaves on behavior and lipid peroxidatıon in rats. Farmacia 2016;64(1):67-71. google scholar
  • Ozsoy N, Yilmaz-Ozden T, Serbetci T, Kultur S, Akalin E. Antioxidant, anti-inflammatory, acetylcholinesterase and thioredoxin reductase inhibitory activities of nine selected Turkish medicinal plants. Indian J Tradit Knowl 2017;16(4):553-61. google scholar
  • Matic S, Stanic S, Bogojevic D, Vidakovic M, Grdovic N, Arambasic J, et al. Exract of the plant Cotinus coggrygria Scop. attenuates pyrogallol-indiced hepatic oxidative stress in Wistar rats. Can J Physiol Pharmacol 2011;89(6):401-11. google scholar
  • Matic S, Stanic S, Bogojevic D, Vidakovic M, Grdovic N, Dinic S, et al. Methanol extract from the stem of Cotinus coggygria Scop., and its major bioactive phytochemical constituent myricetin modulate pyrogallol-induced DNA damage and liver injury. Mutat Res Genet Toxicol Environ Mutagen 2013;755:81-9. google scholar
  • Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol 1978;52:302-10. google scholar
  • Aruoma OI, Halliwell B, Hoey BM, Butler J. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 1989;6(6):593-7. google scholar
  • Aebi H. Catalases. İn: Bergmeyer HU (Ed.). Methods of Enzymatic Analysis. New York: Academic Press; 1974.p.673-84. google scholar
  • Carlberg I, Mannervik B. Glutathione reductase. Methods Enzymol 1985;113:484-90. google scholar
  • Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 1976;71:952-8. google scholar
  • Habig W, Jacoby WB. Assays for differentation of glutathione-S-transferases. Methods Enzymol 1981;77:398-405. google scholar
  • Hillegass LM, Griswold DE, Brickson B, Albrightson-Winslow C. Assessment of myeloperoxidase activity in whole rat kidney. J Pharmacol Methods 1990;24:285-95. google scholar
  • Anderson M. Determination of glutathione disulfide in biological samples. Methods Enzymol 1985;113:548-55. google scholar
  • Fiddler KM. Collaborative study of modified AOAC method of analysis of nitrite in meat and meat products. J Assoc Off Anal Chem 1977;60:594-8. google scholar
  • Gaspar R, Branco CC, Macedo G. Liver manifestations and complications in inflammatory bowel disease: a review. World J. Hepatol 2021;13:1956-67. google scholar
  • Trivedi PP, Jena GB. Ulcerative colitis-induced hepatic damage in mice: studies on inflammation, fibrosis, oxidative DNA damage and GST-P expression. Chem Biol Interact 2013;201(1-3):19-30. google scholar
  • Piechota-Polanczyk A, Fichna J. Review article: the role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases. Naunyn-Schmiedeberg’s Arch Pharmacol 2014;387:605-20. google scholar
  • Fujii J, Homma T, Osaki T. Superoxide radicals in the execution of cell death. Antioxidants 2022;11:501-32. google scholar
  • Tian T, Wang Z, Zhang J. Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxid Med Cell Longev 2017;4535194:1-18 google scholar
  • Wang Y, Chen Y, Zhang X, Lu Y, Chen H. New insights in intestinal oxidative stress damage and the health intervention effects of nutrients: A review. J Funct Foods 2020;75:104248. google scholar
  • Kolios G, Valatas V, Ward SG. Nitric oxide in inflammatory bowel disease: A universal messenger in an unsolved puzzel. Immunology 2004;113:427-37. google scholar
  • Mancini S, Mariani F, Sena P, Benincasa M, Roncucci L. Myeloperoxidase expression in human colonic mucosa is related to systemic oxidative balance in healthy subjects. Redox Rep 2017;22(6):399-407. google scholar
There are 31 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Biochemistry
Journal Section Research Articles
Authors

Deniz Pınar 0000-0002-5072-5806

Narin Öztürk 0000-0003-4594-4251

Nurten Ozsoy 0000-0002-2419-9128

Sevinç Özgür 0000-0002-3319-4732

Ayşe Can 0000-0002-8538-663X

Publication Date March 4, 2025
Submission Date July 3, 2024
Acceptance Date December 4, 2024
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

MLA Pınar, Deniz et al. “INFUSION FROM C. COGGYGRIA SCOP. LEAVES ON THE HEPATIC OXIDATIVE STRESS IN MICE WITH DEXTRAN SODIUM SULPHATE (DSS)-INDUCED ULCERATIVE COLITIS”. Journal of Advanced Research in Health Sciences, vol. 8, no. 1, 2025, pp. 53-58, doi:10.26650/JARHS2025-1497988.