Research Article
BibTex RIS Cite

New Metrics for Deltoidal Hexacontahedron and Pentakis Dodecahedron

Year 2015, Volume: 19 Issue: 3, 353 - 360, 12.12.2015
https://doi.org/10.16984/saufenbilder.03497

Abstract

There are only five regular convex polyhedra known as platonic solids.  Semi-regular convex polyhedron composed of two or more types of regular polygons meeting in identical vertices.  These solids are called the Archimedian solids.  Archimedean solids' s duals are known as the Catalan solids which are only thirteen.  It has been shown that deltoidal icositetrahedron which is Chinese Checker' s unit sphere ([1]).  In this study, we introduce new metrics which their spheres are pentakis dodecahedron and deltoidal hexacontahedron. 

References

  • GELİŞGEN, O., KAYA, R. and OZCAN, M., Distance Formulae in The Chinese Checker Space, Int. J. Pure Appl. Math. 26 (2006), no. 1,35-44.
  • ATIYAH M. , SUTCLIFFE P., Polyhedra in Physics, Chemistry and Geometry, Milan Journal of Mathematics, 71 (2003), 33-58.
  • ERMİŞ, T., KAYA, R., On the Isometries the of 3- Dimensional Maximum Space, Konuralp Journal of Mathematics, 3 (2015), No. 1.
  • GELİŞGEN, Ö., KAYA, R., The Taxicab Space Group, Acta Mathematica Hungarica, DOI:10.1007/s10474-008-8006-9, 122 (2009), No.1-2, 187-200.
  • ERMİŞ T., Düzgün Çokyüzlülerin Metrik Geometriler ile İlişkileri Üzerine, Doktora Tezi, Eskişehir Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü 2014
  • KOCA M. , KOCA N. and KOÇ R., Catalan solids derived from three- dimensional-root systems and quarternions, Journal of Mathematical Physics 51 (2010), 043501.
  • THOMPSON, A. C., Minkowski Geometry, Cambridge University Press, Cambridge, 1996.
  • http://en. wikipedia. org/wiki/Deltoidal_hexecontahedron
  • http://en. wikipedia. org/wiki/Pentakis_dodecahedron

Deltoidal Hexacontahedron ve Pentakis Dodecahedron için Yeni Metrikler

Year 2015, Volume: 19 Issue: 3, 353 - 360, 12.12.2015
https://doi.org/10.16984/saufenbilder.03497

Abstract

Platonik cisimler olarak tanımlanan sadece beş tane düzgün konveks çokyüzlü vardır.  Yarı-düzgün konveks çokyüzlülerin köşe noktalarında iki veya daha fazla tipten düzgün çokgen birleşir.  Bu cisimlere Arşimet cisimleri adı verilir. Arşimet cisimlerinin dualleri Catalan cisimler olarak bilinirler ve sadece onüç tanedir. Son yıllardaki çalışmalarda Çin Dama metriğinin birim küresinin deltoidal icositetrahedron olduğu gösterildi (see[1]). Bu çalışmada birim  küreleri deltoidal hexacontahedron ve pentakis dodecahedron olan metrikleri vereceğiz. 

References

  • GELİŞGEN, O., KAYA, R. and OZCAN, M., Distance Formulae in The Chinese Checker Space, Int. J. Pure Appl. Math. 26 (2006), no. 1,35-44.
  • ATIYAH M. , SUTCLIFFE P., Polyhedra in Physics, Chemistry and Geometry, Milan Journal of Mathematics, 71 (2003), 33-58.
  • ERMİŞ, T., KAYA, R., On the Isometries the of 3- Dimensional Maximum Space, Konuralp Journal of Mathematics, 3 (2015), No. 1.
  • GELİŞGEN, Ö., KAYA, R., The Taxicab Space Group, Acta Mathematica Hungarica, DOI:10.1007/s10474-008-8006-9, 122 (2009), No.1-2, 187-200.
  • ERMİŞ T., Düzgün Çokyüzlülerin Metrik Geometriler ile İlişkileri Üzerine, Doktora Tezi, Eskişehir Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü 2014
  • KOCA M. , KOCA N. and KOÇ R., Catalan solids derived from three- dimensional-root systems and quarternions, Journal of Mathematical Physics 51 (2010), 043501.
  • THOMPSON, A. C., Minkowski Geometry, Cambridge University Press, Cambridge, 1996.
  • http://en. wikipedia. org/wiki/Deltoidal_hexecontahedron
  • http://en. wikipedia. org/wiki/Pentakis_dodecahedron
There are 9 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Zeynep Çolak

Özcan Gelişgen This is me

Publication Date December 12, 2015
Submission Date February 26, 2015
Acceptance Date May 27, 2015
Published in Issue Year 2015 Volume: 19 Issue: 3

Cite

APA Çolak, Z., & Gelişgen, Ö. (2015). New Metrics for Deltoidal Hexacontahedron and Pentakis Dodecahedron. Sakarya University Journal of Science, 19(3), 353-360. https://doi.org/10.16984/saufenbilder.03497
AMA Çolak Z, Gelişgen Ö. New Metrics for Deltoidal Hexacontahedron and Pentakis Dodecahedron. SAUJS. December 2015;19(3):353-360. doi:10.16984/saufenbilder.03497
Chicago Çolak, Zeynep, and Özcan Gelişgen. “New Metrics for Deltoidal Hexacontahedron and Pentakis Dodecahedron”. Sakarya University Journal of Science 19, no. 3 (December 2015): 353-60. https://doi.org/10.16984/saufenbilder.03497.
EndNote Çolak Z, Gelişgen Ö (December 1, 2015) New Metrics for Deltoidal Hexacontahedron and Pentakis Dodecahedron. Sakarya University Journal of Science 19 3 353–360.
IEEE Z. Çolak and Ö. Gelişgen, “New Metrics for Deltoidal Hexacontahedron and Pentakis Dodecahedron”, SAUJS, vol. 19, no. 3, pp. 353–360, 2015, doi: 10.16984/saufenbilder.03497.
ISNAD Çolak, Zeynep - Gelişgen, Özcan. “New Metrics for Deltoidal Hexacontahedron and Pentakis Dodecahedron”. Sakarya University Journal of Science 19/3 (December 2015), 353-360. https://doi.org/10.16984/saufenbilder.03497.
JAMA Çolak Z, Gelişgen Ö. New Metrics for Deltoidal Hexacontahedron and Pentakis Dodecahedron. SAUJS. 2015;19:353–360.
MLA Çolak, Zeynep and Özcan Gelişgen. “New Metrics for Deltoidal Hexacontahedron and Pentakis Dodecahedron”. Sakarya University Journal of Science, vol. 19, no. 3, 2015, pp. 353-60, doi:10.16984/saufenbilder.03497.
Vancouver Çolak Z, Gelişgen Ö. New Metrics for Deltoidal Hexacontahedron and Pentakis Dodecahedron. SAUJS. 2015;19(3):353-60.