Research Article
BibTex RIS Cite

Meyer-Neldel rule in ac conductivity of Cu doped ZnO thin films

Year 2018, Volume: 22 Issue: 6, 1538 - 1543, 01.12.2018
https://doi.org/10.16984/saufenbilder.322378

Abstract

Ac charge transport mechanisms have been comparatively investigated in ZnO thin
films having different Cu dopant.
A comparative study of the applicability of quantum
mechanical tunelling and correlated barrier hopping model
to obtained ac electrical
conductivity results has been
performed.
Comparing the temperature dependence of the frequency exponent shows that the
correlated
barrier hopping model
best describes
the experimental data on the ac conductivity in ZnO:Cu thin films. In order to
gain an understanding of the applicability of Meyer-Neldel rule, the dependence
of the thermal activation energy on Cu doping concentration in these films
has
also been studied. The obtained experimental results indicated that
Meyer-Neldel rule can be succesfully applied ac conductivity data for highly Cu
doped films but not others which has been explained on the basis of
distribution variations in density of states.

References

  • Y. S. Kim and W. P. Tai, “Electrical and optical properties of Al doped ZnO thin films by sol-gel process”, Applied Surface Science, vol. 253, pp. 4911– 4916, 2007.
  • J. Xu, J. Han, Y. Zhang, Y. Sun, and B. Xie, “Studies on alcohol sensing mechanism of ZnO based gas sensors”, Sensors Actuators B: Chemical, vol. 132, pp. 334–339, 2008.
  • K. L. Chopra, S. Major, and D. K. Pandya, “Transparent conductors-a status review”, Thin Solid Films, vol. 102, pp. 1–46, 1983.
  • Z. Yang, Y. Huang, G. Chen, Z. Guo, S. Cheng, and S. Huang, “Ethanol gas sensor based on Al-doped ZnO nanomaterial with many gas diffusing channels”, Sensors and Actuators B: Chemical, vol. 140, pp. 549–556, 2009.
  • Y. Dai, Y. Zhang, Q. K. Li, and C.W. Nan, “Synthesis and optical properties of tetrapod-like zinc oxide nanorods”, Chemical Physics Letters, vol. 358, pp. 83–86, 2002.
  • H. Sato, T. Minami, Y. Tamura, S. Sakata, T. Mori, and N. Ogawa “Aluminium content dependence of milky transparent conducting ZnO:Al films with textured surface prepared by d.c. magnetron sputtering”, Thin Solid Films, vol. 246, pp. 86–91, 1994.
  • P. K. Song, M. Watanabe, M. Kon, A. Mitsui, and Y. Shigesato, “Electrical and optical properties of gallium-doped zinc oxide films deposited by dc magnetron sputtering”, Thin Solid Films, vol. 411, pp. 82–86, 2002.
  • G. G. Valle, P. Hammer, S. H. Pulcinelli, and C. V. Santilli, “Transparent and conductive ZnO:Al thin films prepared by sol-gel dip-coating”, Journal of the European Ceramic Society, vol. 24, pp. 1009–1013, 2004.
  • Z. Q. Ma, W. G. Zhao, and Y. Wang, “Electrical properties of Na/Mg co-doped ZnO thin films”, Thin Solid Films, vol. 515, pp. 8611–8614, 2007.
  • A. E. Jimenez-Gonzalez, J. A. Soto Ureuta, and R. Suarez-Parra, “Optical and electrical characteristics of aluminum-doped ZnO thin films prepared by solgel technique”, Journal of Crystal Growth, vol. 192, pp. 430–438, 1998.
  • U. Wahl, E. Rita, J. G. Correia, E. Alves, and J. P. Araujo, “Implantation site of rare earths in single-crystalline ZnO”, Applied Physics Letters, vol. 82, pp. 1173–1175, 2003.
  • R. Kaur, A. V. Singh, and R. M. Mehra, “Structural, electrical and optical properties of sol–gel derived yttrium doped ZnO films”, Physica Status Solidi (a), vol. 202, pp. 1053–1059, 2005.
  • S. R. Elliott, A theory of a.c. conduction in chalcogenide glasses”, Philosophical Magazine, vol. 36, pp. 1291–1304, 1977.
  • S. R. Lukić-Petrović, F. Skuban, D. M. Petrović, and M. Slankamenac, “Effect of copper on DC and AC conductivities of (As2Se3)–(AsI3) glassy semiconductors”, Journal of Non-Crystalline Solids, vol. 356, pp. 2409–2413, 2010.
  • A. Altındal, Ş. Abdurrahmanoğlu, M. Bulut, and Ö. Bekaroğlu, “Charge transport mechanism in bis(double-decker lutetium(III) phthalocyanine) (Lu2Pc4) thin film”, Synthetic Metals, vol. 150, pp. 181–187, 2005.
  • N. Kılınç, S. Öztürk, L. Arda, A. Altındal, and Z. Z. Öztürk, “Structural, electrical transport and NO2 sensing properties of Y-doped ZnO thin films”, Journal of Alloys and Compounds, vol. 536, pp. 138–144, 2012.
  • W. Meyer and H. Neldel, “Über die beziehungen zwischen der energiekonstanten e under der mengenkonstanten a in der leitwerts-temperaturformel bei oxydischen halbleitern”, Z. Techn. Phys B, vol. 18, pp. 588– 593, 1937.
  • J. W. Niemantsverdriet, K. Markert, and K. Wandelt, “The compensation effect and the manifestation of lateral interactions in thermal desorption spectroscopy”, Applied. Surface Science,vol. 31, pp. 211–219, 1988.
  • W. Bogusz, D. E. Kony, and F. Krok, “Application of the Meyer-Neldel rule to the electrical conductivity of Nasicon”, Materials Science and Engineering B, vol. 15, pp. 169–172, 1992.
  • P. H. Fang, “A model of Meyer-Neldel rule”, Physics Letters A, vol. 30, pp. 217–218, 1969.
  • N. Koga and J. Sestak, “Kinetic compensation effect as a mathematical consequence of the exponential rate constant”, Thermochimica Acta, vol. 182, pp. 201–208, 1991.
  • G. G. Roberts, “Thermally assisted tunnelling and pseudointrinsic conduction: two mechanisms to explain the Meyer-Neldel rule”, Journal of Physics C: Solid State Physics, vol. 4, pp. 167–176, 1971.
  • M. H. Cohen, E. N. Economou, and C. M. Soukoulis, “Electron transport in amorphous semiconductors”, Journal of Non-Crystalline Solids, vol. 66, pp. 285–290, 1984.
  • G. Kemeny and G. B. Rosenberg, “Small Polarons in Organic and Biological Semiconductors”, The Journal of Chemical Physics, vol. 53, pp. 3549–3551, 1970.
  • S. R. Elliott, Physics of Amorphous Materials, 2nd ed., Longman Group UK Limited, England, 1990.
  • J. Stuke, “Problems in the understanding of electronic properties of amorphous silicon”, Journal of Non-Crystalline Solids, vol. 97–98, pp. 1–14, 1987.
  • M. Kikuchi, “The Meyer–Neldel rule and the statistical shift of the Fermi level in amorphous semiconductors”, Journal of Applied Physics, vol.64, pp. 4997–5001, 1988.

Meyer-Neldel Rule in Ac Conductivity of Cu Doped ZnO Thin Films

Year 2018, Volume: 22 Issue: 6, 1538 - 1543, 01.12.2018
https://doi.org/10.16984/saufenbilder.322378

Abstract

Ac charge transport mechanisms have been comparatively investigated in ZnO thin
films having different Cu dopant.
A comparative study of the applicability of quantum
mechanical tunelling and correlated barrier hopping model
to obtained ac electrical
conductivity results has been
performed.
Comparing the temperature dependence of the frequency exponent shows that the
correlated
barrier hopping model
best describes
the experimental data on the ac conductivity in ZnO:Cu thin films. In order to
gain an understanding of the applicability of Meyer-Neldel rule, the dependence
of the thermal activation energy on Cu doping concentration in these films
has
also been studied. The obtained experimental results indicated that
Meyer-Neldel rule can be succesfully applied ac conductivity data for highly Cu
doped films but not others which has been explained on the basis of
distribution variations in density of states.

References

  • Y. S. Kim and W. P. Tai, “Electrical and optical properties of Al doped ZnO thin films by sol-gel process”, Applied Surface Science, vol. 253, pp. 4911– 4916, 2007.
  • J. Xu, J. Han, Y. Zhang, Y. Sun, and B. Xie, “Studies on alcohol sensing mechanism of ZnO based gas sensors”, Sensors Actuators B: Chemical, vol. 132, pp. 334–339, 2008.
  • K. L. Chopra, S. Major, and D. K. Pandya, “Transparent conductors-a status review”, Thin Solid Films, vol. 102, pp. 1–46, 1983.
  • Z. Yang, Y. Huang, G. Chen, Z. Guo, S. Cheng, and S. Huang, “Ethanol gas sensor based on Al-doped ZnO nanomaterial with many gas diffusing channels”, Sensors and Actuators B: Chemical, vol. 140, pp. 549–556, 2009.
  • Y. Dai, Y. Zhang, Q. K. Li, and C.W. Nan, “Synthesis and optical properties of tetrapod-like zinc oxide nanorods”, Chemical Physics Letters, vol. 358, pp. 83–86, 2002.
  • H. Sato, T. Minami, Y. Tamura, S. Sakata, T. Mori, and N. Ogawa “Aluminium content dependence of milky transparent conducting ZnO:Al films with textured surface prepared by d.c. magnetron sputtering”, Thin Solid Films, vol. 246, pp. 86–91, 1994.
  • P. K. Song, M. Watanabe, M. Kon, A. Mitsui, and Y. Shigesato, “Electrical and optical properties of gallium-doped zinc oxide films deposited by dc magnetron sputtering”, Thin Solid Films, vol. 411, pp. 82–86, 2002.
  • G. G. Valle, P. Hammer, S. H. Pulcinelli, and C. V. Santilli, “Transparent and conductive ZnO:Al thin films prepared by sol-gel dip-coating”, Journal of the European Ceramic Society, vol. 24, pp. 1009–1013, 2004.
  • Z. Q. Ma, W. G. Zhao, and Y. Wang, “Electrical properties of Na/Mg co-doped ZnO thin films”, Thin Solid Films, vol. 515, pp. 8611–8614, 2007.
  • A. E. Jimenez-Gonzalez, J. A. Soto Ureuta, and R. Suarez-Parra, “Optical and electrical characteristics of aluminum-doped ZnO thin films prepared by solgel technique”, Journal of Crystal Growth, vol. 192, pp. 430–438, 1998.
  • U. Wahl, E. Rita, J. G. Correia, E. Alves, and J. P. Araujo, “Implantation site of rare earths in single-crystalline ZnO”, Applied Physics Letters, vol. 82, pp. 1173–1175, 2003.
  • R. Kaur, A. V. Singh, and R. M. Mehra, “Structural, electrical and optical properties of sol–gel derived yttrium doped ZnO films”, Physica Status Solidi (a), vol. 202, pp. 1053–1059, 2005.
  • S. R. Elliott, A theory of a.c. conduction in chalcogenide glasses”, Philosophical Magazine, vol. 36, pp. 1291–1304, 1977.
  • S. R. Lukić-Petrović, F. Skuban, D. M. Petrović, and M. Slankamenac, “Effect of copper on DC and AC conductivities of (As2Se3)–(AsI3) glassy semiconductors”, Journal of Non-Crystalline Solids, vol. 356, pp. 2409–2413, 2010.
  • A. Altındal, Ş. Abdurrahmanoğlu, M. Bulut, and Ö. Bekaroğlu, “Charge transport mechanism in bis(double-decker lutetium(III) phthalocyanine) (Lu2Pc4) thin film”, Synthetic Metals, vol. 150, pp. 181–187, 2005.
  • N. Kılınç, S. Öztürk, L. Arda, A. Altındal, and Z. Z. Öztürk, “Structural, electrical transport and NO2 sensing properties of Y-doped ZnO thin films”, Journal of Alloys and Compounds, vol. 536, pp. 138–144, 2012.
  • W. Meyer and H. Neldel, “Über die beziehungen zwischen der energiekonstanten e under der mengenkonstanten a in der leitwerts-temperaturformel bei oxydischen halbleitern”, Z. Techn. Phys B, vol. 18, pp. 588– 593, 1937.
  • J. W. Niemantsverdriet, K. Markert, and K. Wandelt, “The compensation effect and the manifestation of lateral interactions in thermal desorption spectroscopy”, Applied. Surface Science,vol. 31, pp. 211–219, 1988.
  • W. Bogusz, D. E. Kony, and F. Krok, “Application of the Meyer-Neldel rule to the electrical conductivity of Nasicon”, Materials Science and Engineering B, vol. 15, pp. 169–172, 1992.
  • P. H. Fang, “A model of Meyer-Neldel rule”, Physics Letters A, vol. 30, pp. 217–218, 1969.
  • N. Koga and J. Sestak, “Kinetic compensation effect as a mathematical consequence of the exponential rate constant”, Thermochimica Acta, vol. 182, pp. 201–208, 1991.
  • G. G. Roberts, “Thermally assisted tunnelling and pseudointrinsic conduction: two mechanisms to explain the Meyer-Neldel rule”, Journal of Physics C: Solid State Physics, vol. 4, pp. 167–176, 1971.
  • M. H. Cohen, E. N. Economou, and C. M. Soukoulis, “Electron transport in amorphous semiconductors”, Journal of Non-Crystalline Solids, vol. 66, pp. 285–290, 1984.
  • G. Kemeny and G. B. Rosenberg, “Small Polarons in Organic and Biological Semiconductors”, The Journal of Chemical Physics, vol. 53, pp. 3549–3551, 1970.
  • S. R. Elliott, Physics of Amorphous Materials, 2nd ed., Longman Group UK Limited, England, 1990.
  • J. Stuke, “Problems in the understanding of electronic properties of amorphous silicon”, Journal of Non-Crystalline Solids, vol. 97–98, pp. 1–14, 1987.
  • M. Kikuchi, “The Meyer–Neldel rule and the statistical shift of the Fermi level in amorphous semiconductors”, Journal of Applied Physics, vol.64, pp. 4997–5001, 1988.
There are 27 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Research Articles
Authors

Nursel Can

Birsel Can Ömür This is me

Ahmet Altındal

Publication Date December 1, 2018
Submission Date June 19, 2017
Acceptance Date January 13, 2018
Published in Issue Year 2018 Volume: 22 Issue: 6

Cite

APA Can, N., Can Ömür, B., & Altındal, A. (2018). Meyer-Neldel Rule in Ac Conductivity of Cu Doped ZnO Thin Films. Sakarya University Journal of Science, 22(6), 1538-1543. https://doi.org/10.16984/saufenbilder.322378
AMA Can N, Can Ömür B, Altındal A. Meyer-Neldel Rule in Ac Conductivity of Cu Doped ZnO Thin Films. SAUJS. December 2018;22(6):1538-1543. doi:10.16984/saufenbilder.322378
Chicago Can, Nursel, Birsel Can Ömür, and Ahmet Altındal. “Meyer-Neldel Rule in Ac Conductivity of Cu Doped ZnO Thin Films”. Sakarya University Journal of Science 22, no. 6 (December 2018): 1538-43. https://doi.org/10.16984/saufenbilder.322378.
EndNote Can N, Can Ömür B, Altındal A (December 1, 2018) Meyer-Neldel Rule in Ac Conductivity of Cu Doped ZnO Thin Films. Sakarya University Journal of Science 22 6 1538–1543.
IEEE N. Can, B. Can Ömür, and A. Altındal, “Meyer-Neldel Rule in Ac Conductivity of Cu Doped ZnO Thin Films”, SAUJS, vol. 22, no. 6, pp. 1538–1543, 2018, doi: 10.16984/saufenbilder.322378.
ISNAD Can, Nursel et al. “Meyer-Neldel Rule in Ac Conductivity of Cu Doped ZnO Thin Films”. Sakarya University Journal of Science 22/6 (December 2018), 1538-1543. https://doi.org/10.16984/saufenbilder.322378.
JAMA Can N, Can Ömür B, Altındal A. Meyer-Neldel Rule in Ac Conductivity of Cu Doped ZnO Thin Films. SAUJS. 2018;22:1538–1543.
MLA Can, Nursel et al. “Meyer-Neldel Rule in Ac Conductivity of Cu Doped ZnO Thin Films”. Sakarya University Journal of Science, vol. 22, no. 6, 2018, pp. 1538-43, doi:10.16984/saufenbilder.322378.
Vancouver Can N, Can Ömür B, Altındal A. Meyer-Neldel Rule in Ac Conductivity of Cu Doped ZnO Thin Films. SAUJS. 2018;22(6):1538-43.