Research Article
BibTex RIS Cite

Description of Maximally Dissipative Quasi-Differential Operators for First Order

Year 2018, Volume: 22 Issue: 6, 1651 - 1658, 01.12.2018
https://doi.org/10.16984/saufenbilder.407581

Abstract

In this
work, the general form of maximally dissipative extensions of the minimal
operator generated by first order linear symmetric quasi-differential
expression in the weighted Hilbert space of vector-functions at right
semi-infinite interval has been found. Later on, geometry of spectrum of these
extensions is investigated.

References

  • Referans1 V. I. Gorbachuk and M. I. Gorbachuk, “Boundary value problems for operator differential equations, ”Kluwer, Dordrecht, 1999.
  • Referans2 J. Von Neumann, “Allgemeine eigenwerttheorie hermitescher funktionaloperatoren,” Math. Ann., vol. 102, pp. 49-131, 1929.
  • Referans3 C. Fischbacher, “On the Theory of Dissipative Extensions,” PhD Thesis, University of Kent School of Mathematics, Statistic and Actuarial Science, Canterbury, 2017.
  • Referans4 B. Sz.-Nagy and C. Foias, “Analyse harmonique des operateurs de L’ espace de Hilbert,” Masson, Paris and Akad Kiodo, Budapest, 1997 (English transl, North-Holland, Amesterdam and Akad Kiado, Budapest: 1970).
  • Referans5 F. S. Rofe-Beketov and A. M. Kholkin, “Spectral analysis of differential operators.,” World Scientific Monograph Series in Mathematics, vol. 7, 2005.
  • Referans6 L. Hörmander, “On the theory of general partial differential operators,” Acta Mathematica, vol. 94, pp. 161-248, 1955.
Year 2018, Volume: 22 Issue: 6, 1651 - 1658, 01.12.2018
https://doi.org/10.16984/saufenbilder.407581

Abstract

References

  • Referans1 V. I. Gorbachuk and M. I. Gorbachuk, “Boundary value problems for operator differential equations, ”Kluwer, Dordrecht, 1999.
  • Referans2 J. Von Neumann, “Allgemeine eigenwerttheorie hermitescher funktionaloperatoren,” Math. Ann., vol. 102, pp. 49-131, 1929.
  • Referans3 C. Fischbacher, “On the Theory of Dissipative Extensions,” PhD Thesis, University of Kent School of Mathematics, Statistic and Actuarial Science, Canterbury, 2017.
  • Referans4 B. Sz.-Nagy and C. Foias, “Analyse harmonique des operateurs de L’ espace de Hilbert,” Masson, Paris and Akad Kiodo, Budapest, 1997 (English transl, North-Holland, Amesterdam and Akad Kiado, Budapest: 1970).
  • Referans5 F. S. Rofe-Beketov and A. M. Kholkin, “Spectral analysis of differential operators.,” World Scientific Monograph Series in Mathematics, vol. 7, 2005.
  • Referans6 L. Hörmander, “On the theory of general partial differential operators,” Acta Mathematica, vol. 94, pp. 161-248, 1955.
There are 6 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Pembe Ipek Al 0000-0002-6111-1121

Publication Date December 1, 2018
Submission Date March 19, 2018
Acceptance Date April 5, 2018
Published in Issue Year 2018 Volume: 22 Issue: 6

Cite

APA Ipek Al, P. (2018). Description of Maximally Dissipative Quasi-Differential Operators for First Order. Sakarya University Journal of Science, 22(6), 1651-1658. https://doi.org/10.16984/saufenbilder.407581
AMA Ipek Al P. Description of Maximally Dissipative Quasi-Differential Operators for First Order. SAUJS. December 2018;22(6):1651-1658. doi:10.16984/saufenbilder.407581
Chicago Ipek Al, Pembe. “Description of Maximally Dissipative Quasi-Differential Operators for First Order”. Sakarya University Journal of Science 22, no. 6 (December 2018): 1651-58. https://doi.org/10.16984/saufenbilder.407581.
EndNote Ipek Al P (December 1, 2018) Description of Maximally Dissipative Quasi-Differential Operators for First Order. Sakarya University Journal of Science 22 6 1651–1658.
IEEE P. Ipek Al, “Description of Maximally Dissipative Quasi-Differential Operators for First Order”, SAUJS, vol. 22, no. 6, pp. 1651–1658, 2018, doi: 10.16984/saufenbilder.407581.
ISNAD Ipek Al, Pembe. “Description of Maximally Dissipative Quasi-Differential Operators for First Order”. Sakarya University Journal of Science 22/6 (December 2018), 1651-1658. https://doi.org/10.16984/saufenbilder.407581.
JAMA Ipek Al P. Description of Maximally Dissipative Quasi-Differential Operators for First Order. SAUJS. 2018;22:1651–1658.
MLA Ipek Al, Pembe. “Description of Maximally Dissipative Quasi-Differential Operators for First Order”. Sakarya University Journal of Science, vol. 22, no. 6, 2018, pp. 1651-8, doi:10.16984/saufenbilder.407581.
Vancouver Ipek Al P. Description of Maximally Dissipative Quasi-Differential Operators for First Order. SAUJS. 2018;22(6):1651-8.