Investigation of Magnetic Properties of Spin 5/2 Ising Chain by Using Transfer Matrix Method
Year 2018,
Volume: 22 Issue: 6, 1901 - 1906, 01.12.2018
Mehmet Gökhan Şensoy
,
Mehmet Batı
Abstract
A magnetic property of the one dimensional spin 5/2
Ising model under the magnetic field has been investigated by means of transfer
matrix method. Thermodynamic response functions are also obtained for varying
values of scaling temperature and scaling magnetic field. Entropy and heat
capacity of the system were calculated by benefiting from the temperature
dependencies of Helmholtz free energy. Our simulation results demonstrate that
as the strength of the magnetic field is increased, heat capacity tend to shift
to the relatively higher temperature regions, and these findings are consistent
with previous results for the low spin values in one dimensional Ising systems.
References
- [1] Kodama, R. H., “Magnetic nanoparticles,” Journal of Magnetism and Magnetic Materials, vol. 200, pp. 359-372, 1999.
[2] Zeng, H, Li, J., Liu, J.P, Wang, Z. L., and Sun, S., “Exchange-coupled nanocomposite magnets by nanoparticle self-assembly,” Nature, vol. 420, pp. 395-398, 2002.
[3] Kodama, R. H., Berkowitz, A. E., McNiff, E. J. and Foner, J. S., “Surface Spin Disorder in NiFe2O4 Nanoparticles,” Physical Review Letters, vol. 774, pp. 394-397, 1996.
[4] V. S. Leite and W. Figueiredo,” Spin-glass surface disorder on the magnetic behaviour of antiferromagnetic small particles,” Physica A: Statistical Mechanics and its Applications, vol. 350, pp. 379-392, 2005.
[5] Sarli, N. and Keskin, M., “Two distinct magnetic susceptibility peaks and magnetic reversal events in a cylindrical core/shell spin-1 Ising nanowire,” Solid State Communucations, vol 152, pp. 354-359, 2012.
[6] Eglesias, O, Battle, X, and Labarta, A., “Microscopic origin of exchange bias in core/shell nanoparticles,” Physical Review B, vol. 72, pp. 212401, 2005.
[7] Garanin, D. A. and Kachkachi, H., “Surface Contribution to the Anisotropy of Magnetic Nanoparticles,” Physical Review Letters, vol. 90, pp. 65504, 2003.
[8] Pathria, R. K. and Beale, P.D., “Statistical Mechanics”, Third Edition, Academic Press, 2011.
[9] Ising, E., “Beitrag zur Theorie des Ferromagnetismus”, Zeitschrift für Physik, vol. 31, pp. 253 1925.
[10] Vatansever, Z.D., Vatansever, E., “Thermal and magnetic phase transition properties of a binary alloy spherical nanoparticle: A Monte Carlo simulation study,” Journal of Magnetism and Magnetic Materials, vol. 432, pp. 239-244, 2017.
[11 Vatansever, Z.D., Vatansever, E., “Finite temperature magnetic phase transition features of the quenched disordered binary alloy cylindrical nanowire,” Journal of Alloys and Compounds vol. 701, pp. 288-294, 2017.
[12] Ovchinnikov, A.S., Bostrem, I.G., Sinitsyn, V.E., Boyarchenkov, A.S., Baranov, N.V., Inoue, K., “Low-energy excitations and thermodynamical properties of the quantum (5/2, 1/2, 1/2) ferrimagnetic chain,” Journal of Physics: Condensed Matter, vol. 14, no. 34, pp. 8067-8078, 2002.
[13] Kassan-Ogly, F.A., “One-dimensional ising model with next-nearest-neighbour interaction in magnetic field,” Phase Transitions, vol 14, pp. 353-365, 2001.
[14] Proshkin, A. I., Ponomareva, T. Yu., Menshikh, I. A., Zarubin, A. V. and Kassan-Ogly, F. A., “Correlation function of one-dimensional s = 1 Ising model,” Physics of Metals and Metallography, vol. 118, no. 10, pp. 929-934, 2017.
[15] Anderson, P. W., “New Approach to the Theory of Superexchange Interactions,” Physical Review B, vol. 115, pp. 2, 1959.
[16] Kittel, C., “Model of Exchange-Inversion Magnetization,” Physical Review B, vol. 120, pp. 335, 1960.
[17] Rodbell, D. S. and Owen, J., “Sublattice Magnetization and Lattice Distortions in MnO and NiO,” Journal of Applied Physics, vol. 35, pp. 1002-1003, 1964.
[18] Iwashita, T. and Uryu, N., “Higher Order Spin Coupling in Complex Compounds,” Journal of the Physical Society of Japan, vol.36, pp. 48-54, 1974.
[19] Koebler, U., Englich, J., Hupe, O. and Hesse, J., “Effective spin quantum numbers in iron, cobalt and nickel,” Physica B: Condensed Matter, vol. 339, pp. 156-163, 2003.
[20] Kaneyoshi, T., Jascur, M., “Contribution to the Theory of the spin 5/2 Blume-Capel Model” “Physica Status Solidi (b) vol. 175, pp. 225-236, 1993.
[21] Saber, M., Tucker, J.W., “Phase Diagram and Magnetization Moments of the Spin-5/2 Diluted Ising Ferromagnet in a Transverse Field”, Physica Status Solidi (b) vol. 189, pp. 229-238, 1995.
[22] Song, W.J., Yang, C.Z. , “FRG-DPIR study of spin-5/2 Ising model with a random transverse field,” Solid State Com., vol. 92 pp. 361-364, 1994.
[23] Kramers, H. A. and Wannier, G. H., “Statistics of the Two-Dimensional Ferromagnet. Part I,” Physical Review, vol. 60, pp. 252-262, 1941.
[24] Kramers, H. A. and Wannier, G. H., “Statistics of the Two-Dimensional Ferromagnet. Part II,” Physical Review, vol 60, pp. 263-276, 1941.
Transfer Matris Yöntemi Kullanılarak Spin 5/2 Ising Zincirinin Manyetik Özelliklerinin İncelenmesi
Year 2018,
Volume: 22 Issue: 6, 1901 - 1906, 01.12.2018
Mehmet Gökhan Şensoy
,
Mehmet Batı
Abstract
Manyetik alan altındaki
bir boyutlu spin 5/2 Ising modelinin manyetik özellikleri transfer matris
metodu kullanılarak incelenmiştir. Termodinamik cevap fonksiyonları
ölçeklendirilmiş sıcaklık ve manyetik alanın farklı değerleri için elde
edilmiştir. Helmholtz serbest enerjisinin sıcacklığa bağlı değişiminden
yararlanarak, sistemin entropi ve ısı kapasitesi hesaplanmıştır. Similasyon
sonuçları, manyetik alan şiddetinin artmasıyla ısı kapasitesinin bağıl olarak
daha yüksek sıcaklık bölgesine kaydığını göstermektedir ve bu bulgular düşük
spin değerli bir boyutlu Ising sistemleri için elde edilen daha önceki sonuçlar
ile uyumludur.
References
- [1] Kodama, R. H., “Magnetic nanoparticles,” Journal of Magnetism and Magnetic Materials, vol. 200, pp. 359-372, 1999.
[2] Zeng, H, Li, J., Liu, J.P, Wang, Z. L., and Sun, S., “Exchange-coupled nanocomposite magnets by nanoparticle self-assembly,” Nature, vol. 420, pp. 395-398, 2002.
[3] Kodama, R. H., Berkowitz, A. E., McNiff, E. J. and Foner, J. S., “Surface Spin Disorder in NiFe2O4 Nanoparticles,” Physical Review Letters, vol. 774, pp. 394-397, 1996.
[4] V. S. Leite and W. Figueiredo,” Spin-glass surface disorder on the magnetic behaviour of antiferromagnetic small particles,” Physica A: Statistical Mechanics and its Applications, vol. 350, pp. 379-392, 2005.
[5] Sarli, N. and Keskin, M., “Two distinct magnetic susceptibility peaks and magnetic reversal events in a cylindrical core/shell spin-1 Ising nanowire,” Solid State Communucations, vol 152, pp. 354-359, 2012.
[6] Eglesias, O, Battle, X, and Labarta, A., “Microscopic origin of exchange bias in core/shell nanoparticles,” Physical Review B, vol. 72, pp. 212401, 2005.
[7] Garanin, D. A. and Kachkachi, H., “Surface Contribution to the Anisotropy of Magnetic Nanoparticles,” Physical Review Letters, vol. 90, pp. 65504, 2003.
[8] Pathria, R. K. and Beale, P.D., “Statistical Mechanics”, Third Edition, Academic Press, 2011.
[9] Ising, E., “Beitrag zur Theorie des Ferromagnetismus”, Zeitschrift für Physik, vol. 31, pp. 253 1925.
[10] Vatansever, Z.D., Vatansever, E., “Thermal and magnetic phase transition properties of a binary alloy spherical nanoparticle: A Monte Carlo simulation study,” Journal of Magnetism and Magnetic Materials, vol. 432, pp. 239-244, 2017.
[11 Vatansever, Z.D., Vatansever, E., “Finite temperature magnetic phase transition features of the quenched disordered binary alloy cylindrical nanowire,” Journal of Alloys and Compounds vol. 701, pp. 288-294, 2017.
[12] Ovchinnikov, A.S., Bostrem, I.G., Sinitsyn, V.E., Boyarchenkov, A.S., Baranov, N.V., Inoue, K., “Low-energy excitations and thermodynamical properties of the quantum (5/2, 1/2, 1/2) ferrimagnetic chain,” Journal of Physics: Condensed Matter, vol. 14, no. 34, pp. 8067-8078, 2002.
[13] Kassan-Ogly, F.A., “One-dimensional ising model with next-nearest-neighbour interaction in magnetic field,” Phase Transitions, vol 14, pp. 353-365, 2001.
[14] Proshkin, A. I., Ponomareva, T. Yu., Menshikh, I. A., Zarubin, A. V. and Kassan-Ogly, F. A., “Correlation function of one-dimensional s = 1 Ising model,” Physics of Metals and Metallography, vol. 118, no. 10, pp. 929-934, 2017.
[15] Anderson, P. W., “New Approach to the Theory of Superexchange Interactions,” Physical Review B, vol. 115, pp. 2, 1959.
[16] Kittel, C., “Model of Exchange-Inversion Magnetization,” Physical Review B, vol. 120, pp. 335, 1960.
[17] Rodbell, D. S. and Owen, J., “Sublattice Magnetization and Lattice Distortions in MnO and NiO,” Journal of Applied Physics, vol. 35, pp. 1002-1003, 1964.
[18] Iwashita, T. and Uryu, N., “Higher Order Spin Coupling in Complex Compounds,” Journal of the Physical Society of Japan, vol.36, pp. 48-54, 1974.
[19] Koebler, U., Englich, J., Hupe, O. and Hesse, J., “Effective spin quantum numbers in iron, cobalt and nickel,” Physica B: Condensed Matter, vol. 339, pp. 156-163, 2003.
[20] Kaneyoshi, T., Jascur, M., “Contribution to the Theory of the spin 5/2 Blume-Capel Model” “Physica Status Solidi (b) vol. 175, pp. 225-236, 1993.
[21] Saber, M., Tucker, J.W., “Phase Diagram and Magnetization Moments of the Spin-5/2 Diluted Ising Ferromagnet in a Transverse Field”, Physica Status Solidi (b) vol. 189, pp. 229-238, 1995.
[22] Song, W.J., Yang, C.Z. , “FRG-DPIR study of spin-5/2 Ising model with a random transverse field,” Solid State Com., vol. 92 pp. 361-364, 1994.
[23] Kramers, H. A. and Wannier, G. H., “Statistics of the Two-Dimensional Ferromagnet. Part I,” Physical Review, vol. 60, pp. 252-262, 1941.
[24] Kramers, H. A. and Wannier, G. H., “Statistics of the Two-Dimensional Ferromagnet. Part II,” Physical Review, vol 60, pp. 263-276, 1941.