Research Article
BibTex RIS Cite

Application of Monte Carlo Method for Gamma ray Attenuation Properties of Lead Zinc Borate Glasses

Year 2018, Volume: 22 Issue: 6, 1848 - 1852, 01.12.2018
https://doi.org/10.16984/saufenbilder.443765

Abstract

This
work aims to introduce an useful computational model, based in Monte Carlo
simulation, which can be used in practical application, and this paper presents
values determined using a Monte Carlo algorithm for linear attenuation
coefficient of lead zinc borate glasses with different percentages of PbO. The
simulation results have been verified with predictions from the XCOM program in
the studied energy region from 1 keV to 2000 keV and experimental results.
Thus, this verification indicated that this research method can be followed to
determine the interaction and attenuation of gamma rays with the several
energies in different materials. Also, the values of mean free path and the
half-value layer were calculated using the values of the linear attenuation
coefficient. The dependence of these radiation shielding parameters on the
energy of impinging gamma ray and the ratio of substances changes has been
examined.

References

  • J. E. Hurtado, and A. H. Barbat, “Monte Carlo Techniques in Computational Stochastic Mechanics,” Archives of Computational Methods in Engineering, vol. 5, no. 1, pp. 3-30, 1998.
  • I. Kawrakow, “Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version,” Medical Physics, vol. 27, no. 3, pp. 485-498, 2000.
  • F. Arqueros and G. D. Montesinos, “A simple algorithm for the transport of gamma rays in a medium,” American Journal of Physics, vol. 71, no. 1, pp. 38-45, 2003.
  • Applied R&M Manual for Defence Systems Part D - Supporting Theory, Chapter 4:Monte-Carlo Simulation.
  • A. N. Mohammed, M. S. Karim, H. H. Daroysh, and L. Y. Abbas, “Monte Carlo assessment of gamma ray attenuation properties for MCP-96 alloy using transmission technique,” The Fifth Scientific Conference of the College of Science University of Kerbala, pp. 95-104, 2017.
  • M. E. Medhat and V. P. Singh, “Geant4 Monte Carlo code application in photon interaction parameter of composite materials and comparison with XCOM and experimental data,” Indian Journal of Pure and Applied Physics, vol. 54, pp. 137-143, 2016.
  • O. Ozyurt, N. Altinsoy, S. I. Karaaslan, A. Bora, B. Buyuk, and I. Erk, “Calculation of gamma ray attenuation coefficients of some granite samples using a Monte Carlo simulation code,” Radiation Physics and Chemistry, vol. 144, pp. 271-275, 2018.
  • D. Han, W. Kim, S. Lee, H. Kim, and P. Romer, “Assessment of gamma radiation shielding properties of concretecontainers containing recycled coarse aggregates,” Construction and Building Materials, vol. 163, no. 28, pp. 122-138, 2018.
  • R. Bagheri, S. P. Shirmardi, and R. Adeli, “Study on gamma-ray shielding characteristics of lead oxide, barite, and boron ores using MCNP-4C Monte Carlo code and experimental data,” Journal of Testing and Evaluation, vol. 45, no. 6, 2259-2266, 2017.
  • L. F. Pirez and M. E. Medhat, “Different methods of mass attenuation coefficient evaluation: Influences in the measurement of some soil physical properties,” Applied Radiation and Isotopes, vol. 111, pp. 66-74, 2016.
  • A. M. El-Khayatt, A. M. Ali, V. P. Singh, and N. M. Badiger, “Determination of mass attenuation coefficient of low-Z dosimetric materials,” Radiation Effects and Defects in Solids, vol. 169, no. 12, pp. 1038-1044, 2014.
  • S. J. Stankovic, R. D. Ilic, K. Jankovic, D. Bojovic, and B. Loncar, “Gamma radiation absorption characteristics of concrete with components of different type materials,” Acta Physica Polonica A, vol. 117, no. 5, pp. 812-816, 2010
  • S. Y. El-Kameesy, S. A. El-Ghany, M. A. E. Azooz, and Y. A. A. El-Gammam, “Shielding properties of lead zinc borate glasses,” World Journal of Condensed Matter Physics, vol. 3, pp. 198-202, 2013.
  • O. Gurler and U. Akar Tarim, “An investigation on determination of attenuation coefficients for gamma-rays by Monte Carlo method,” Journal of Radioanalytical and Nuclear Chemistry vol. 293, pp. 397–401, 2012.
  • M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K. Olsen, XCOM: photon cross sections database, NIST standard reference database 8 (XGAM), 2010.
Year 2018, Volume: 22 Issue: 6, 1848 - 1852, 01.12.2018
https://doi.org/10.16984/saufenbilder.443765

Abstract

References

  • J. E. Hurtado, and A. H. Barbat, “Monte Carlo Techniques in Computational Stochastic Mechanics,” Archives of Computational Methods in Engineering, vol. 5, no. 1, pp. 3-30, 1998.
  • I. Kawrakow, “Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version,” Medical Physics, vol. 27, no. 3, pp. 485-498, 2000.
  • F. Arqueros and G. D. Montesinos, “A simple algorithm for the transport of gamma rays in a medium,” American Journal of Physics, vol. 71, no. 1, pp. 38-45, 2003.
  • Applied R&M Manual for Defence Systems Part D - Supporting Theory, Chapter 4:Monte-Carlo Simulation.
  • A. N. Mohammed, M. S. Karim, H. H. Daroysh, and L. Y. Abbas, “Monte Carlo assessment of gamma ray attenuation properties for MCP-96 alloy using transmission technique,” The Fifth Scientific Conference of the College of Science University of Kerbala, pp. 95-104, 2017.
  • M. E. Medhat and V. P. Singh, “Geant4 Monte Carlo code application in photon interaction parameter of composite materials and comparison with XCOM and experimental data,” Indian Journal of Pure and Applied Physics, vol. 54, pp. 137-143, 2016.
  • O. Ozyurt, N. Altinsoy, S. I. Karaaslan, A. Bora, B. Buyuk, and I. Erk, “Calculation of gamma ray attenuation coefficients of some granite samples using a Monte Carlo simulation code,” Radiation Physics and Chemistry, vol. 144, pp. 271-275, 2018.
  • D. Han, W. Kim, S. Lee, H. Kim, and P. Romer, “Assessment of gamma radiation shielding properties of concretecontainers containing recycled coarse aggregates,” Construction and Building Materials, vol. 163, no. 28, pp. 122-138, 2018.
  • R. Bagheri, S. P. Shirmardi, and R. Adeli, “Study on gamma-ray shielding characteristics of lead oxide, barite, and boron ores using MCNP-4C Monte Carlo code and experimental data,” Journal of Testing and Evaluation, vol. 45, no. 6, 2259-2266, 2017.
  • L. F. Pirez and M. E. Medhat, “Different methods of mass attenuation coefficient evaluation: Influences in the measurement of some soil physical properties,” Applied Radiation and Isotopes, vol. 111, pp. 66-74, 2016.
  • A. M. El-Khayatt, A. M. Ali, V. P. Singh, and N. M. Badiger, “Determination of mass attenuation coefficient of low-Z dosimetric materials,” Radiation Effects and Defects in Solids, vol. 169, no. 12, pp. 1038-1044, 2014.
  • S. J. Stankovic, R. D. Ilic, K. Jankovic, D. Bojovic, and B. Loncar, “Gamma radiation absorption characteristics of concrete with components of different type materials,” Acta Physica Polonica A, vol. 117, no. 5, pp. 812-816, 2010
  • S. Y. El-Kameesy, S. A. El-Ghany, M. A. E. Azooz, and Y. A. A. El-Gammam, “Shielding properties of lead zinc borate glasses,” World Journal of Condensed Matter Physics, vol. 3, pp. 198-202, 2013.
  • O. Gurler and U. Akar Tarim, “An investigation on determination of attenuation coefficients for gamma-rays by Monte Carlo method,” Journal of Radioanalytical and Nuclear Chemistry vol. 293, pp. 397–401, 2012.
  • M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K. Olsen, XCOM: photon cross sections database, NIST standard reference database 8 (XGAM), 2010.
There are 15 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Research Articles
Authors

Urkiye Akar Tarım 0000-0002-5494-5128

Orhan Gürler 0000-0002-8463-3432

Publication Date December 1, 2018
Submission Date July 13, 2018
Acceptance Date September 3, 2018
Published in Issue Year 2018 Volume: 22 Issue: 6

Cite

APA Akar Tarım, U., & Gürler, O. (2018). Application of Monte Carlo Method for Gamma ray Attenuation Properties of Lead Zinc Borate Glasses. Sakarya University Journal of Science, 22(6), 1848-1852. https://doi.org/10.16984/saufenbilder.443765
AMA Akar Tarım U, Gürler O. Application of Monte Carlo Method for Gamma ray Attenuation Properties of Lead Zinc Borate Glasses. SAUJS. December 2018;22(6):1848-1852. doi:10.16984/saufenbilder.443765
Chicago Akar Tarım, Urkiye, and Orhan Gürler. “Application of Monte Carlo Method for Gamma Ray Attenuation Properties of Lead Zinc Borate Glasses”. Sakarya University Journal of Science 22, no. 6 (December 2018): 1848-52. https://doi.org/10.16984/saufenbilder.443765.
EndNote Akar Tarım U, Gürler O (December 1, 2018) Application of Monte Carlo Method for Gamma ray Attenuation Properties of Lead Zinc Borate Glasses. Sakarya University Journal of Science 22 6 1848–1852.
IEEE U. Akar Tarım and O. Gürler, “Application of Monte Carlo Method for Gamma ray Attenuation Properties of Lead Zinc Borate Glasses”, SAUJS, vol. 22, no. 6, pp. 1848–1852, 2018, doi: 10.16984/saufenbilder.443765.
ISNAD Akar Tarım, Urkiye - Gürler, Orhan. “Application of Monte Carlo Method for Gamma Ray Attenuation Properties of Lead Zinc Borate Glasses”. Sakarya University Journal of Science 22/6 (December 2018), 1848-1852. https://doi.org/10.16984/saufenbilder.443765.
JAMA Akar Tarım U, Gürler O. Application of Monte Carlo Method for Gamma ray Attenuation Properties of Lead Zinc Borate Glasses. SAUJS. 2018;22:1848–1852.
MLA Akar Tarım, Urkiye and Orhan Gürler. “Application of Monte Carlo Method for Gamma Ray Attenuation Properties of Lead Zinc Borate Glasses”. Sakarya University Journal of Science, vol. 22, no. 6, 2018, pp. 1848-52, doi:10.16984/saufenbilder.443765.
Vancouver Akar Tarım U, Gürler O. Application of Monte Carlo Method for Gamma ray Attenuation Properties of Lead Zinc Borate Glasses. SAUJS. 2018;22(6):1848-52.