An Investigation on UHMWPE-HAp Composites Manufactured by Solution-Gelation Method
Year 2020,
Volume: 24 Issue: 1, 1 - 9, 01.02.2020
Gözde Efe
,
İbrahim Altınsoy
,
Serbülent Türk
,
Cuma Bindal
Abstract
In this study, HAp
reinforcement into UHMWPE matrix having 1.0 % wt. mass and its effects on microstructural
and mechanical properties of the UHMWPE composites were investigated. UHMWPE
composites reinforced with 0.5, 1 and 2.0 wt. % nano HAp powders, respectively
were successfully produced by solution and gelation method. SEM studies showed
that HAp nano particles were homogenously distributed into UHMWPE matrix and good
cross-linked with the matrix. SEM-map EDS analysis confirmed SEM. FTIR results
revealed that HAp incorporation into matrix was conducted and crystallization
of UHMWPE increased by increment in amount of HAp results in deepening
crystallization peaks at nearby 500 and 1500 cm-1. DSC results, which is useful technique to
determine the variation of melting point and crystallization ratio of UHMWPE
composites, indicated that there was no remarkable change in melting points of
composites, while crystallinity of the samples generally showed slight increase
by increasing amount of nano HAp particles. The tensile test instrument was
utilized to determine elastic modulus of the samples and their elastic modulus
were raised from 1050 to 1900 MPa with higher HAp reinforcement. It can be
concluded that UHMWPE-2 % wt. HAp composites have promising results by being
paired with crystallinity and elastic modulus.
References
- [1] Gopi, D., Kavitha, L., Rajeswari, D. Synthesis of Pure and Substituted Hydroxyapatite Nanoparticles by Cost Effective Facile Methods, in: M. Aliofkhazraei (Ed.), Handb. Nanoparticles. 2015: 167–190.
- [2] Mitić, Ž., Stolić, A., Stojanović, S., Najman, S., Ignjatović, N., Nikolić, G., Trajanović, M. Instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue: A review. Materials Science and Engineering C. 2017; 79: 930-49.
- [3] Celebi Efe, G., Ozaydin, F., Ucisik, H., Bindal, C., Liang, H. Production of ultra-high molecular weight polyethylene-granite composite films by gelation/crystallization. J Therm Analy. Calorim. 2016; 125: 659-65.
- [4] Firdous, S. Fuzail, M., Atif, M., Nawaz, M. Polarimetric characterization of ultra-high molecular weight polyethylene (UHMWPE) for bone substitute biomaterials. Optik. 2011; 122: 99-104.
- [5] Golchin, A., Villain, A., Emami, N. Tribological behaviour of nanodiamond reinforced UHMWPE in water-lubricated contacts. Tribology International. 2017; 110: 195-200.
- [6] Macuvele, D. L. P., Nones, J., Matsinhe, J. V., Lima, M. M., Soares, C., Fiori, M. A., Riella, H. G. Advances in ultra high molecular weight polyethylene/hydroxyapatite composites for biomedical applications: A brief review. Materials Science and Engineering: C. 2017; 76 :1248-1262.
- [7] Baino, F., Novajra, G., Vitale-Brovarone, C. Bioceramics and Scaffolds: A Winning Combination for Tissue Engineering. Front. Bioeng. Biotechnol. 2015; 3-202: 1-17.
- [8] Pylypchuk, I.V., Gorbyk, P.P., Petranovska, A.L., Korduban, O.M., Markovsky, P.E., Ivasyshyn, O.M. Chapter 7 - Formation of biomimetic hydroxyapatite coatings on the surface of titanium and Ti-containing alloys: Ti–6Al–4V and Ti–Zr–Nb. Elsevier Inc. 2016. doi:http://dx.doi.org/10.1016/B978-0-323-42861-3.00007-8.
- [9] Cruz, M.A.E., Ruiz, G.C.M., Faria, A.N., Zancanela, D.C., Pereira, L.S., Ciancaglini, P., Ramos, A.P. Calcium carbonate hybrid coating promotes the formation of biomimetic hydroxyapatite on titanium surfaces. Appl. Surf. Sci. 2016; 370: 459–468.
- [10] Cai, Y., Liu, Y., Yan, W., Hu, Q., Tao, J., Zhang, M., Shi, Z., Tang, R. Role of hydroxyapatite nanoparticle size in bone cell proliferation. J. Mater. Chem. 2007; 17: 3780-87.
- [11] Dorozhkin, S. V. Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater. 2010; 6: 715–34.
- [12] Dong, Z., Li, Y., Zou, Q. Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering. Appl. Surf. Sci. 2009; 255: 6087-91.
- [13] Wang, Y., Liu, L., Guo, S. Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro. Polym. Degrad. Stab. 2010; 95: 207–13.
- [14] Sadat-Shojai, M., Khorasani, M.-T., Dinpanah-Khoshdargi, E., Jamshidi, A. Synthesis methods for nanosized hydroxyapatite indiverse structures. Acta Biomaterialia. 2013; 9: 7591–7621.
- [15] Isaji, S., Bin, Y., Matsuo, M. Electrical conductivity and self-temperature-control heating properties of carbon nanotubes filled polyethylene films. Polymer. 2009; 50: 1046-53.
- [16] Chukov D. I., Stepashkin, A., Maksimkin, A. V., Tcherdyntsev, V. V., Kaloshkin, S. D., Kuskov, K. V., Bugakov, V. I. Investigation of structure, mechanical and tribological properties of short carbon fiber reinforced UHMWPE-matrix composites. Compos B. 2015; 76: 79–88.
- [17] Mahfuz, H., Khan, M. R., Leventouri, T., Liarokapis, E. Investigation of MWCNT reinforcement on the strain hardening behavior of ultrahigh molecular weight polyethylene. J Nanotechnol. 2011.
- [18] Maksimkin, A.V., Kharitonov, A. P., Nematulloev, S. G., Kaloshkin, S. D., Gorshenkov, M. V., Chukov, D. I., Shchetinina, I. V. Fabrication of oriented UHMWPE films using low solvent concentration. Materials & Design 2017; 115: 133-137.
- [19] Xiong, D., Lin, J., Fan, D., Jin, Z. Wear of nano-TiO2/UHMWPE composites radiated by gamma ray under physiological saline water lubrication. Journal of Materials Science: Materials in Medicine. 2007; 18-11: 2131-35.
- [20] Chang, B. P., Md Akil, H., Md. Nasir, R. Mechanical and Tribological Properties of Zeolite-reinforced UHMWPE Composite for Implant Application. Procedia Engineering. 2013; 68: 88 – 94.
- [21] Sharma, S., Bijwe, J., Panier, S., Sharma, M. Abrasive wear performance of SiC-UHMWPE nano-composites – Influence of amount and size. Wear. 2015; 332-333: 863-71.
- [22] Sharma, S., Bijwe, J., Panier, S. Assessment of potential of nano and micro-sized boron carbide particles to enhance the abrasive wear resistance of UHMWPE. Composites Part B: Engineering. 2016; 99: 312-20.
- [23] Gupta, A., Tripathi, G., Lahiri, D., Balani K. Compression Molded Ultra High Molecular Weight Polyethylene–Hydroxyapatite–Aluminum Oxide–Carbon Nanotube Hybrid Composites for Hard Tissue Replacement. Journal of Materials Science & Technology. 2013; 29-6: 514-22.
- [24] Paz, A., Guadarrama, D., López, M., González, J. E., Brizuela, N., Aragón, J. A Comparative Study of Hydroxyapatite Nanoparticles Synthesized By Different Routes. Quim. Nov. 2012; 35: 1724-27.
- [25] Varma, H. K., Babu, S. S. Synthesis of calcium phosphate bioceramics by citrate gel pyrolysis method. Ceram. Int. 2005; 31: 109–14.
- [26] Kurtz, S. M. The UHMWPE Handbook: Ultra- High Molecular Weight Polyethylene in Total Joint Replacement. Elsevier Academic Press. 2004.
- [27] Kong, Y., Hay, J. N. The measurement of the crystallinity of polymers by DSC. Polymer. 2002; 43: 3873-3878.
- [28] Ning, N., Fu, S., Zhang, W., Chen, F., Wang, K., Deng, H., Zhang, Q., Fu, Q. Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization. Progress in Polymer Science. 2012; 37-10: 1425-55.
- [29] Zhao, X., Zhang, Q., Chen, D., Lu, P. Enhanced Mechanical Properties of Graphene-Based Poly(vinyl alcohol) Composites. Macromolecules. 2010; 43: 2357-2363.
Year 2020,
Volume: 24 Issue: 1, 1 - 9, 01.02.2020
Gözde Efe
,
İbrahim Altınsoy
,
Serbülent Türk
,
Cuma Bindal
References
- [1] Gopi, D., Kavitha, L., Rajeswari, D. Synthesis of Pure and Substituted Hydroxyapatite Nanoparticles by Cost Effective Facile Methods, in: M. Aliofkhazraei (Ed.), Handb. Nanoparticles. 2015: 167–190.
- [2] Mitić, Ž., Stolić, A., Stojanović, S., Najman, S., Ignjatović, N., Nikolić, G., Trajanović, M. Instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue: A review. Materials Science and Engineering C. 2017; 79: 930-49.
- [3] Celebi Efe, G., Ozaydin, F., Ucisik, H., Bindal, C., Liang, H. Production of ultra-high molecular weight polyethylene-granite composite films by gelation/crystallization. J Therm Analy. Calorim. 2016; 125: 659-65.
- [4] Firdous, S. Fuzail, M., Atif, M., Nawaz, M. Polarimetric characterization of ultra-high molecular weight polyethylene (UHMWPE) for bone substitute biomaterials. Optik. 2011; 122: 99-104.
- [5] Golchin, A., Villain, A., Emami, N. Tribological behaviour of nanodiamond reinforced UHMWPE in water-lubricated contacts. Tribology International. 2017; 110: 195-200.
- [6] Macuvele, D. L. P., Nones, J., Matsinhe, J. V., Lima, M. M., Soares, C., Fiori, M. A., Riella, H. G. Advances in ultra high molecular weight polyethylene/hydroxyapatite composites for biomedical applications: A brief review. Materials Science and Engineering: C. 2017; 76 :1248-1262.
- [7] Baino, F., Novajra, G., Vitale-Brovarone, C. Bioceramics and Scaffolds: A Winning Combination for Tissue Engineering. Front. Bioeng. Biotechnol. 2015; 3-202: 1-17.
- [8] Pylypchuk, I.V., Gorbyk, P.P., Petranovska, A.L., Korduban, O.M., Markovsky, P.E., Ivasyshyn, O.M. Chapter 7 - Formation of biomimetic hydroxyapatite coatings on the surface of titanium and Ti-containing alloys: Ti–6Al–4V and Ti–Zr–Nb. Elsevier Inc. 2016. doi:http://dx.doi.org/10.1016/B978-0-323-42861-3.00007-8.
- [9] Cruz, M.A.E., Ruiz, G.C.M., Faria, A.N., Zancanela, D.C., Pereira, L.S., Ciancaglini, P., Ramos, A.P. Calcium carbonate hybrid coating promotes the formation of biomimetic hydroxyapatite on titanium surfaces. Appl. Surf. Sci. 2016; 370: 459–468.
- [10] Cai, Y., Liu, Y., Yan, W., Hu, Q., Tao, J., Zhang, M., Shi, Z., Tang, R. Role of hydroxyapatite nanoparticle size in bone cell proliferation. J. Mater. Chem. 2007; 17: 3780-87.
- [11] Dorozhkin, S. V. Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater. 2010; 6: 715–34.
- [12] Dong, Z., Li, Y., Zou, Q. Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering. Appl. Surf. Sci. 2009; 255: 6087-91.
- [13] Wang, Y., Liu, L., Guo, S. Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro. Polym. Degrad. Stab. 2010; 95: 207–13.
- [14] Sadat-Shojai, M., Khorasani, M.-T., Dinpanah-Khoshdargi, E., Jamshidi, A. Synthesis methods for nanosized hydroxyapatite indiverse structures. Acta Biomaterialia. 2013; 9: 7591–7621.
- [15] Isaji, S., Bin, Y., Matsuo, M. Electrical conductivity and self-temperature-control heating properties of carbon nanotubes filled polyethylene films. Polymer. 2009; 50: 1046-53.
- [16] Chukov D. I., Stepashkin, A., Maksimkin, A. V., Tcherdyntsev, V. V., Kaloshkin, S. D., Kuskov, K. V., Bugakov, V. I. Investigation of structure, mechanical and tribological properties of short carbon fiber reinforced UHMWPE-matrix composites. Compos B. 2015; 76: 79–88.
- [17] Mahfuz, H., Khan, M. R., Leventouri, T., Liarokapis, E. Investigation of MWCNT reinforcement on the strain hardening behavior of ultrahigh molecular weight polyethylene. J Nanotechnol. 2011.
- [18] Maksimkin, A.V., Kharitonov, A. P., Nematulloev, S. G., Kaloshkin, S. D., Gorshenkov, M. V., Chukov, D. I., Shchetinina, I. V. Fabrication of oriented UHMWPE films using low solvent concentration. Materials & Design 2017; 115: 133-137.
- [19] Xiong, D., Lin, J., Fan, D., Jin, Z. Wear of nano-TiO2/UHMWPE composites radiated by gamma ray under physiological saline water lubrication. Journal of Materials Science: Materials in Medicine. 2007; 18-11: 2131-35.
- [20] Chang, B. P., Md Akil, H., Md. Nasir, R. Mechanical and Tribological Properties of Zeolite-reinforced UHMWPE Composite for Implant Application. Procedia Engineering. 2013; 68: 88 – 94.
- [21] Sharma, S., Bijwe, J., Panier, S., Sharma, M. Abrasive wear performance of SiC-UHMWPE nano-composites – Influence of amount and size. Wear. 2015; 332-333: 863-71.
- [22] Sharma, S., Bijwe, J., Panier, S. Assessment of potential of nano and micro-sized boron carbide particles to enhance the abrasive wear resistance of UHMWPE. Composites Part B: Engineering. 2016; 99: 312-20.
- [23] Gupta, A., Tripathi, G., Lahiri, D., Balani K. Compression Molded Ultra High Molecular Weight Polyethylene–Hydroxyapatite–Aluminum Oxide–Carbon Nanotube Hybrid Composites for Hard Tissue Replacement. Journal of Materials Science & Technology. 2013; 29-6: 514-22.
- [24] Paz, A., Guadarrama, D., López, M., González, J. E., Brizuela, N., Aragón, J. A Comparative Study of Hydroxyapatite Nanoparticles Synthesized By Different Routes. Quim. Nov. 2012; 35: 1724-27.
- [25] Varma, H. K., Babu, S. S. Synthesis of calcium phosphate bioceramics by citrate gel pyrolysis method. Ceram. Int. 2005; 31: 109–14.
- [26] Kurtz, S. M. The UHMWPE Handbook: Ultra- High Molecular Weight Polyethylene in Total Joint Replacement. Elsevier Academic Press. 2004.
- [27] Kong, Y., Hay, J. N. The measurement of the crystallinity of polymers by DSC. Polymer. 2002; 43: 3873-3878.
- [28] Ning, N., Fu, S., Zhang, W., Chen, F., Wang, K., Deng, H., Zhang, Q., Fu, Q. Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization. Progress in Polymer Science. 2012; 37-10: 1425-55.
- [29] Zhao, X., Zhang, Q., Chen, D., Lu, P. Enhanced Mechanical Properties of Graphene-Based Poly(vinyl alcohol) Composites. Macromolecules. 2010; 43: 2357-2363.