Research Article
BibTex RIS Cite
Year 2023, Volume: 27 Issue: 4, 781 - 791, 25.08.2023
https://doi.org/10.16984/saufenbilder.1172543

Abstract

References

  • L. T. Mika, E. Cséfalvay, Á. Németh, “Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability”, Chemical Reviews, vol. 118, no. 2, pp. 505-613, 2018.
  • F. A. Kucherov, L. V. Romashov, G. M. Averochkin, V. P. Ananikov, “Biobased C6 -Furans in Organic Synthesis and Industry: Cycloaddition Chemistry as a Key Approach to Aromatic Building Blocks”, ACS Sustainable Chemistry & Engineering, vol. 9, no. 8, pp. 3011-3042, 2021.
  • S. Van de Vyver, J. Geboers, P. A. Jacobs, B. F. Sels, “Recent Advances in the Catalytic Conversion of Cellulose”, ChemCatChem, vol. 3, no. 1, pp. 82-94, 2011.
  • A. Guleria, G. Kumari, S. Saravanamurugan, “Cellulose valorization to potential platform chemicals”, In Biomass, Biofuels, Biochemicals, S. Saravanamurugan, A. Pandey, H. Li, A. Riisager Elsevier, 2020, pp. 433-457.
  • F. Delbecq C. Len, “Recent Advances in the Microwave-Assisted Production of Hydroxymethylfurfural by Hydrolysis of Cellulose Derivatives—A Review”, Molecules, vol. 23, no. 8, pp. 1973, 2018.
  • Y. Zhao, S. Wang, H. Lin, J. Chen, H. Xu, “Influence of a Lewis acid and a Brønsted acid on the conversion of microcrystalline cellulose into 5-hydroxymethylfurfural in a single-phase reaction system of water and 1,2-dimethoxyethane”, RSC Advances, vol. 8, no. 13, pp. 7235-7242, 2018.
  • H. Abou-Yousef, E. B. Hassan, P. Steele, “Rapid conversion of cellulose to 5-hydroxymethylfurfural using single and combined metal chloride catalysts in ionic liquid”, Journal of Fuel Chemistry and Technology, vol. 41, no. 2, pp. 214-222, 2013.
  • L. Zhang, Y. Tian, Y. Wang, L. Dai, “Enhanced conversion of α-cellulose to 5-HMF in aqueous biphasic system catalyzed by FeCl3-CuCl2”, Chinese Chemical Letters, vol. 32, no. 7, pp.2233-2238, 2021.
  • J. Shen C. E. Wyman, “Hydrochloric acid-catalyzed levulinic acid formation from cellulose: data and kinetic model to maximize yields”, AIChE Journal, vol. 58, no. 1, pp. 236-246, 2012.
  • L. Zhou, R. Liang, Z. Ma, T. Wu, Y. Wu, “Conversion of cellulose to HMF in ionic liquid catalyzed by bifunctional ionic liquids”, Bioresource Technology, vol. 129, pp. 450-455, 2013.
  • M. Wu, M. Huang, L. Chen, Q. Ma, J. Zhou, “Direct conversion of cellulose to 5-hydroxymethylfurfural over SnNb2O6–ZrO2 catalyst”, Reaction Kinetics, Mechanisms and Catalysis, vol. 130, no. 2, pp. 903-918, 2020.
  • K. Y. Nandiwale, N. D. Galande, P. Thakur, S. D. Sawant, V. P. Zambre, V. V. Bokade, “One-Pot Synthesis of 5-Hydroxymethylfurfural by Cellulose Hydrolysis over Highly Active Bimodal Micro/Mesoporous H-ZSM-5 Catalyst”, ACS Sustainable Chemistry & Engineering, vol. 2, no. 7, pp. 1928-1932, 2014.
  • X. Li, K. Peng, Q. Xia, X. Liu, Y. Wang, “Efficient conversion of cellulose into 5-hydroxymethylfurfural over niobia/carbon composites”, Chemical Engineering Journal, vol. 332, pp. 528-536, 2018.
  • G. Fan, Y. Wang, Z. Hu, J. Yan, J. Li, G. Song, “Synthesis of 5-hydroxymethyl furfural from cellulose via a two-step process in polar aprotic solvent”, Carbohydrate Polymers, vol. 200, pp. 529-535, 2018.
  • Y. Han, L. Ye, X. Gu, P. Zhu, X. Lu, “Lignin-based solid acid catalyst for the conversion of cellulose to levulinic acid using γ-valerolactone as solvent”, Industrial Crops and Products, vol. 127, pp. 88-93, 2019.
  • A. Ishihara, “Preparation of Amorphous Silica-Alumina Using the Sol–Gel Method and its Reactivity for a Matrix in Catalytic Cracking”, Catalysis Survey Asia, vol. 16, no. 1, pp. 36-47, 2012.
  • F. Nadolny, B. Hannebauer, F. Alscher, S. Peitz, W. Reschetilowski, R. Franke, “Experimental and theoretical investigation of heterogeneous catalyzed oligomerization of a mixed C4 stream over modified amorphous aluminosilicates”, Journal of Catalysis, vol. 367, pp. 81-94, 2018.
  • R. E. Nugraha, D. Prasetyoko, N. Asikin-Mijan, H. Bahruji, S. Suprapto, Y. H. Taufiq-Yap, A. Abdul Jalil, “The effect of structure directing agents on micro/mesopore structures of aluminosilicates from Indonesian kaolin as deoxygenation catalysts”, Microporous and Mesoporous Materials, vol. 315, pp. 110917, 2021.
  • H. Taghvaei, A. Moaddeli, A. Khalafi-Nezhad, A. Iulianelli, “Catalytic hydrodeoxygenation of lignin pyrolytic-oil over Ni catalysts supported on spherical Al-MCM-41 nanoparticles: Effect of Si/Al ratio and Ni loading”, Fuel, vol. 293, p. 120493, 2021.
  • P. Sadeghpour, M. Haghighi, A. Ebrahimi, “Ultrasound-assisted rapid hydrothermal design of efficient nanostructured MFI-Type aluminosilicate catalyst for methanol to propylene reaction”, Ultrasonics Sonochemistry, vol. 72, pp. 105416, 2021.
  • M. Zabeti, T. S. Nguyen, L. Lefferts, H. J. Heeres, K. Seshan, “In situ catalytic pyrolysis of lignocellulose using alkali-modified amorphous silica alumina”, Bioresource Technology, vol. 118, pp. 374-381, 2012.
  • Y. Zhai, P. Zhu, S. Li, C. Zhang, Z. Li, X. Xu, G. Chen, Z. Tan, R. Zhang, Y. Liu, “Hydrotreatment of bio-oil over Pd-based catalysts”, Journal of Renewable and Sustainable Energy, vol. 6, no. 4, pp. 043129, 2014.
  • S. T. Pham,M. B. Nguyen, G. H. Le, T. T. T. Pham, T. T. T. Quan, T. D. Nguyen, T. L. Son, T. A. Vu, “Cellulose Conversion to 5 Hydroxymethyl Furfural (5-HMF) Using Al-Incorporated SBA-15 as Highly Efficient Catalyst”, Journal of Chemistry, vol. 2019, pp. 1-8, 2019.
  • S. T. Pham,M. B. Nguyen, G. H. Le, T. D. Nguyen, C. D. Pham, T. S. Le, T. A. Vu, “Influence of Brønsted and Lewis acidity of the modified Al-MCM-41 solid acid on cellulose conversion and 5-hydroxylmethylfurfuran selectivity”, Chemosphere, vol. 265, pp. 129062, 2021.
  • X. Yan, B. Liu, J. Huang, Y. Wu, H. Chen, H. Xi, “Dual Template Preparation of MFI Zeolites with Tuning Catalytic Properties in Alkylation of Mesitylene with Benzyl Alcohol”, Industrial & Engineering Chemistry Research, vol. 58, no. 8, pp. 2924-2932, 2019.
  • S. Bosnar, V. Rac, D. Stošić, A. Travert, G.Postole, A. Auroux, S. Škapin, L. Damjanović-Vasilić, J. Bronić, X. Du, S. Marković, V. Pavlović, V. Rakić, “Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study”, Microporous and Mesoporous Materials, vol. 329, pp. 111534, 2022.
  • W. Wang, J. Xie, P. Wang, L. Chen, C. Au, S. Yin, “Dual-template synthesis of HZSM-5 zeolites with tailored activity in toluene methylation with CH3Br”, Chinese Journal of Chemical Engineering, vol. 27, no. 8, pp. 1846-1850, 2019.
  • Y. Tu, T. Zhan, T. Wu, F. Zhang, I. Kumakiri, X. Chen, H. Kita, “Rapid synthesis of AlPO-18 molecular sieve for gas separation with dual-template agent”, Microporous and Mesoporous Materials, vol. 327, pp. 111436, 2021.
  • L. Sun, W. Zhang, Z. Li, M. Yang, Y. Wang, X. Zhang, P. Tian, Z. Liu, “Dual-template directed aminothermal syntheses and characterization of silicoaluminophosphates SAPO-CLO and ECR-40”, Microporous and Mesoporous Materials, vol. 315, pp. 110915, 2021.
  • Q. Miao, X. Huang, J. Li, Y. Duan, L. Yan, Y. Jiang, S. Lu, “Hierarchical macro-mesoporous Mo/Al2O3 catalysts prepared by dual-template method for oxidative desulfurization”, Journal Porous Materials, vol. 28, no. 6, pp. 1895-1906, 2021.
  • T. Kaneko, F. Nagata, S. Kugimiya, K. Kato, “Morphological control of mesoporous silica particles by dual template method”, Ceramics International, vol. 44, no. 16, pp. 20581-20585, 2018.
  • Q. Wang, H. Wang, Y. Wu, L. Cheng, L. Zhu, J. Zhu, Z. Li, Y. Ke, “Pore size control of monodisperse silica particles by dual template sol–gel method”, Journal of Sol-Gel Science and Technology, vol. 94, no. 1, pp. 186-194, 2020.
  • L. Du, H. Song, S. Liao, “Tuning the morphology of mesoporous silica by using various template combinations”, Applied Surface Science, vol. 255, no. 23, pp. 9365-9370, 2009.
  • L. Emdadi, Y. Wu, G. Zhu, C.-C. Chang, W. Fan, T. Pham, R. F. Lobo, D. Liu, “Dual Template Synthesis of Meso- and Microporous MFI Zeolite Nanosheet Assemblies with Tailored Activity in Catalytic Reactions”, Chemistry of Materials, vol. 26, no. 3, pp. 1345-1355, 2014.
  • M. Wang, X. Wang, Q. You, Y. Wu, X. Yang, H. Chen, B. Liu, Q. Hao, J. Zhang, X. Ma, “Dual-template synthesis of hierarchically layered titanosilicate-1 zeolites for catalytic epoxidation of cyclooctene”, Microporous and Mesoporous Materials, vol. 323, pp. 111207, 2021.
  • J. Shi, Y. Chen, T. Liu, H. Liang, “Preparation of mesoporous γ-Al2O3 catalysts by dual template method”, Journal of Dispersion Science and Technology, vol. 41, no. 10, pp. 1471-1479, 2020.
  • V. Şimşek, “Investigation of Catalytic Sustainability of Silica-Based Mesoporous Acidic Catalysts and Ion-Exchange Resins in Methyl Acetate Synthesis and Characterizations of Synthesized Catalysts”, Arabian Journal for Science and Engineering, vol. 44, no. 6, pp. 5301-5310, 2019.
  • A. Yüksel, “Levulinik Asit Üretimi İçin Selülozun Sıcak-Basınçlı Suda Hidrotermal Muamelesi”, Uludağ University Journal of The Faculty of Engineering, vol. 21, no. 2, pp. 415-415, 2016.
  • D. M. Oliveira A. S. Andrada, “Synthesis of ordered mesoporous silica MCM-41 with controlled morphology for potential application in controlled drug delivery systems”, Cerâmica, vol. 65, no. 374, pp. 170-179, 2019.
  • S. Musić, N. Filipović-Vinceković, L. Sekovanić, “Precipitation of amorphous SiO2 particles and their properties”, Brazilian Journal of Chemical Engineering, vol. 28, no. 1, pp. 89-94, 2011.
  • R. Maddalena, C. Hall, A. Hamilton, “Effect of silica particle size on the formation of calcium silicate hydrate [C-S-H] using thermal analysis”, Thermochimica Acta, vol. 672, pp. 142-149, 2019.
  • S. T. Pham, M. B. Nguyen, G. H. Le, T. T. T. Pham, T. T. T. Quan, T. D. Nguyen, T. L. Son, T. A. Vu, “Cellulose Conversion to 5 Hydroxymethyl Furfural (5-HMF) Using Al-Incorporated SBA-15 as Highly Efficient Catalyst”, Journal of Chemistry, vol. 2019, pp. 1-8, 2019.
  • B. K. Singh, R. Tomar, S. Kumar, A. Jain, B. S. Tomar, V. K. Manchanda, “Sorption of 137Cs, 133Ba and 154Eu by synthesized sodium aluminosilicate (Na-AS)”, Journal of Hazardous Materials, vol. 178, no. 1-3, pp. 771-776, 2010.
  • Y. Liu, F. Zeng, B. Sun, P. Jia, I. T. Graham, “Structural Characterizations of Aluminosilicates in Two Types of Fly Ash Samples from Shanxi Province, North China”, Minerals, vol. 9, no. 6, pp. 358, 2019.
  • J. Zheng, J. Ma, Y. Wang, Y. Bai, X. Zhang, R. Li, “Synthesis and Catalytic Property of a Zeolite Composite for Preparation of Dimethyl Ether from Methanol Dehydration”, Catalysis Letters, vol. 130, no. 3-4, pp. 672-678, 2009.
  • E. Soghrati, T. K. C. Ong, C. K. Poh, S. Kawi, A. Borgna, “Zeolite–supported nickel phyllosilicate catalyst for C O hydrogenolysis of cyclic ethers and polyols”, Applied Catalysis B: Environmental, vol. 235, pp. 130-142, 2018.
  • U. Tyagi, N. Anand, D. Kumar, “Synergistic effect of modified activated carbon and ionic liquid in the conversion of microcrystalline cellulose to 5-Hydroxymethyl Furfural”, Bioresource Technology, vol. 267, pp. 326-332, 2018.
  • F. Lai, F. Yan, P. Wang, S. Wang, S. Li, Z. Zhang, “Highly efficient conversion of cellulose into 5-hydroxymethylfurfural using temperature-responsive ChnH5-nCeW12O40 (n = 1–5) catalysts”, Chemical Engineering Journal, vol. 396, pp. 125282, 2020.
  • S. Zhao, M. Cheng, J. Li, J. Tian, X. Wang, “One pot production of 5-hydroxymethylfurfural with high yield from cellulose by a Brønsted–Lewis–surfactant-combined heteropolyacid catalyst”, Chemical Communications, vol. 47, no. 7, pp. 2176, 2011.

Conversion of Cellulose to 5-HMF in the Presence of Silica-Alumina Catalysts Synthesized by Dual Template at Low Temperature

Year 2023, Volume: 27 Issue: 4, 781 - 791, 25.08.2023
https://doi.org/10.16984/saufenbilder.1172543

Abstract

In this study, which incorporates many principles of green chemistry (use of renewable feedstocks, catalysis, improvement of energy efficiency, and harmless solvents and auxiliaries), the single-phase catalytic conversion of cellulose to 5-HMF in over silica-alumina catalysts was investigated. A series of dual-template silica-alumina catalysts with CTAB as the main template and F127 or triethylamine (TEA) as the co-template were synthesized at a low temperature of 60 °C and characterized by XRD, N2 adsorption-desorption technique, FT-IR and pyridine adsorption FT-IR. The surface area is increased by using the second template in silica-alumina catalyst. In addition, the acidity of the surface was changed by using the second template. The cellulose conversion and yield of 5-HMF increased from 36% to 52% and from 3.13% to 4.24%, respectively, due to the properties gained by using the second template. 52% cellulose conversion and 8.13% selectivity of 5-HMF were obtained in aqueous medium, 220 °C and 6 h reaction time with the catalyst using TEA as co-template. Eco-friendly silica catalysts synthesized at low temperatures with a dual template can be considered as a potential alternative for the conversion of cellulose into value-added biobased products.

References

  • L. T. Mika, E. Cséfalvay, Á. Németh, “Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability”, Chemical Reviews, vol. 118, no. 2, pp. 505-613, 2018.
  • F. A. Kucherov, L. V. Romashov, G. M. Averochkin, V. P. Ananikov, “Biobased C6 -Furans in Organic Synthesis and Industry: Cycloaddition Chemistry as a Key Approach to Aromatic Building Blocks”, ACS Sustainable Chemistry & Engineering, vol. 9, no. 8, pp. 3011-3042, 2021.
  • S. Van de Vyver, J. Geboers, P. A. Jacobs, B. F. Sels, “Recent Advances in the Catalytic Conversion of Cellulose”, ChemCatChem, vol. 3, no. 1, pp. 82-94, 2011.
  • A. Guleria, G. Kumari, S. Saravanamurugan, “Cellulose valorization to potential platform chemicals”, In Biomass, Biofuels, Biochemicals, S. Saravanamurugan, A. Pandey, H. Li, A. Riisager Elsevier, 2020, pp. 433-457.
  • F. Delbecq C. Len, “Recent Advances in the Microwave-Assisted Production of Hydroxymethylfurfural by Hydrolysis of Cellulose Derivatives—A Review”, Molecules, vol. 23, no. 8, pp. 1973, 2018.
  • Y. Zhao, S. Wang, H. Lin, J. Chen, H. Xu, “Influence of a Lewis acid and a Brønsted acid on the conversion of microcrystalline cellulose into 5-hydroxymethylfurfural in a single-phase reaction system of water and 1,2-dimethoxyethane”, RSC Advances, vol. 8, no. 13, pp. 7235-7242, 2018.
  • H. Abou-Yousef, E. B. Hassan, P. Steele, “Rapid conversion of cellulose to 5-hydroxymethylfurfural using single and combined metal chloride catalysts in ionic liquid”, Journal of Fuel Chemistry and Technology, vol. 41, no. 2, pp. 214-222, 2013.
  • L. Zhang, Y. Tian, Y. Wang, L. Dai, “Enhanced conversion of α-cellulose to 5-HMF in aqueous biphasic system catalyzed by FeCl3-CuCl2”, Chinese Chemical Letters, vol. 32, no. 7, pp.2233-2238, 2021.
  • J. Shen C. E. Wyman, “Hydrochloric acid-catalyzed levulinic acid formation from cellulose: data and kinetic model to maximize yields”, AIChE Journal, vol. 58, no. 1, pp. 236-246, 2012.
  • L. Zhou, R. Liang, Z. Ma, T. Wu, Y. Wu, “Conversion of cellulose to HMF in ionic liquid catalyzed by bifunctional ionic liquids”, Bioresource Technology, vol. 129, pp. 450-455, 2013.
  • M. Wu, M. Huang, L. Chen, Q. Ma, J. Zhou, “Direct conversion of cellulose to 5-hydroxymethylfurfural over SnNb2O6–ZrO2 catalyst”, Reaction Kinetics, Mechanisms and Catalysis, vol. 130, no. 2, pp. 903-918, 2020.
  • K. Y. Nandiwale, N. D. Galande, P. Thakur, S. D. Sawant, V. P. Zambre, V. V. Bokade, “One-Pot Synthesis of 5-Hydroxymethylfurfural by Cellulose Hydrolysis over Highly Active Bimodal Micro/Mesoporous H-ZSM-5 Catalyst”, ACS Sustainable Chemistry & Engineering, vol. 2, no. 7, pp. 1928-1932, 2014.
  • X. Li, K. Peng, Q. Xia, X. Liu, Y. Wang, “Efficient conversion of cellulose into 5-hydroxymethylfurfural over niobia/carbon composites”, Chemical Engineering Journal, vol. 332, pp. 528-536, 2018.
  • G. Fan, Y. Wang, Z. Hu, J. Yan, J. Li, G. Song, “Synthesis of 5-hydroxymethyl furfural from cellulose via a two-step process in polar aprotic solvent”, Carbohydrate Polymers, vol. 200, pp. 529-535, 2018.
  • Y. Han, L. Ye, X. Gu, P. Zhu, X. Lu, “Lignin-based solid acid catalyst for the conversion of cellulose to levulinic acid using γ-valerolactone as solvent”, Industrial Crops and Products, vol. 127, pp. 88-93, 2019.
  • A. Ishihara, “Preparation of Amorphous Silica-Alumina Using the Sol–Gel Method and its Reactivity for a Matrix in Catalytic Cracking”, Catalysis Survey Asia, vol. 16, no. 1, pp. 36-47, 2012.
  • F. Nadolny, B. Hannebauer, F. Alscher, S. Peitz, W. Reschetilowski, R. Franke, “Experimental and theoretical investigation of heterogeneous catalyzed oligomerization of a mixed C4 stream over modified amorphous aluminosilicates”, Journal of Catalysis, vol. 367, pp. 81-94, 2018.
  • R. E. Nugraha, D. Prasetyoko, N. Asikin-Mijan, H. Bahruji, S. Suprapto, Y. H. Taufiq-Yap, A. Abdul Jalil, “The effect of structure directing agents on micro/mesopore structures of aluminosilicates from Indonesian kaolin as deoxygenation catalysts”, Microporous and Mesoporous Materials, vol. 315, pp. 110917, 2021.
  • H. Taghvaei, A. Moaddeli, A. Khalafi-Nezhad, A. Iulianelli, “Catalytic hydrodeoxygenation of lignin pyrolytic-oil over Ni catalysts supported on spherical Al-MCM-41 nanoparticles: Effect of Si/Al ratio and Ni loading”, Fuel, vol. 293, p. 120493, 2021.
  • P. Sadeghpour, M. Haghighi, A. Ebrahimi, “Ultrasound-assisted rapid hydrothermal design of efficient nanostructured MFI-Type aluminosilicate catalyst for methanol to propylene reaction”, Ultrasonics Sonochemistry, vol. 72, pp. 105416, 2021.
  • M. Zabeti, T. S. Nguyen, L. Lefferts, H. J. Heeres, K. Seshan, “In situ catalytic pyrolysis of lignocellulose using alkali-modified amorphous silica alumina”, Bioresource Technology, vol. 118, pp. 374-381, 2012.
  • Y. Zhai, P. Zhu, S. Li, C. Zhang, Z. Li, X. Xu, G. Chen, Z. Tan, R. Zhang, Y. Liu, “Hydrotreatment of bio-oil over Pd-based catalysts”, Journal of Renewable and Sustainable Energy, vol. 6, no. 4, pp. 043129, 2014.
  • S. T. Pham,M. B. Nguyen, G. H. Le, T. T. T. Pham, T. T. T. Quan, T. D. Nguyen, T. L. Son, T. A. Vu, “Cellulose Conversion to 5 Hydroxymethyl Furfural (5-HMF) Using Al-Incorporated SBA-15 as Highly Efficient Catalyst”, Journal of Chemistry, vol. 2019, pp. 1-8, 2019.
  • S. T. Pham,M. B. Nguyen, G. H. Le, T. D. Nguyen, C. D. Pham, T. S. Le, T. A. Vu, “Influence of Brønsted and Lewis acidity of the modified Al-MCM-41 solid acid on cellulose conversion and 5-hydroxylmethylfurfuran selectivity”, Chemosphere, vol. 265, pp. 129062, 2021.
  • X. Yan, B. Liu, J. Huang, Y. Wu, H. Chen, H. Xi, “Dual Template Preparation of MFI Zeolites with Tuning Catalytic Properties in Alkylation of Mesitylene with Benzyl Alcohol”, Industrial & Engineering Chemistry Research, vol. 58, no. 8, pp. 2924-2932, 2019.
  • S. Bosnar, V. Rac, D. Stošić, A. Travert, G.Postole, A. Auroux, S. Škapin, L. Damjanović-Vasilić, J. Bronić, X. Du, S. Marković, V. Pavlović, V. Rakić, “Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study”, Microporous and Mesoporous Materials, vol. 329, pp. 111534, 2022.
  • W. Wang, J. Xie, P. Wang, L. Chen, C. Au, S. Yin, “Dual-template synthesis of HZSM-5 zeolites with tailored activity in toluene methylation with CH3Br”, Chinese Journal of Chemical Engineering, vol. 27, no. 8, pp. 1846-1850, 2019.
  • Y. Tu, T. Zhan, T. Wu, F. Zhang, I. Kumakiri, X. Chen, H. Kita, “Rapid synthesis of AlPO-18 molecular sieve for gas separation with dual-template agent”, Microporous and Mesoporous Materials, vol. 327, pp. 111436, 2021.
  • L. Sun, W. Zhang, Z. Li, M. Yang, Y. Wang, X. Zhang, P. Tian, Z. Liu, “Dual-template directed aminothermal syntheses and characterization of silicoaluminophosphates SAPO-CLO and ECR-40”, Microporous and Mesoporous Materials, vol. 315, pp. 110915, 2021.
  • Q. Miao, X. Huang, J. Li, Y. Duan, L. Yan, Y. Jiang, S. Lu, “Hierarchical macro-mesoporous Mo/Al2O3 catalysts prepared by dual-template method for oxidative desulfurization”, Journal Porous Materials, vol. 28, no. 6, pp. 1895-1906, 2021.
  • T. Kaneko, F. Nagata, S. Kugimiya, K. Kato, “Morphological control of mesoporous silica particles by dual template method”, Ceramics International, vol. 44, no. 16, pp. 20581-20585, 2018.
  • Q. Wang, H. Wang, Y. Wu, L. Cheng, L. Zhu, J. Zhu, Z. Li, Y. Ke, “Pore size control of monodisperse silica particles by dual template sol–gel method”, Journal of Sol-Gel Science and Technology, vol. 94, no. 1, pp. 186-194, 2020.
  • L. Du, H. Song, S. Liao, “Tuning the morphology of mesoporous silica by using various template combinations”, Applied Surface Science, vol. 255, no. 23, pp. 9365-9370, 2009.
  • L. Emdadi, Y. Wu, G. Zhu, C.-C. Chang, W. Fan, T. Pham, R. F. Lobo, D. Liu, “Dual Template Synthesis of Meso- and Microporous MFI Zeolite Nanosheet Assemblies with Tailored Activity in Catalytic Reactions”, Chemistry of Materials, vol. 26, no. 3, pp. 1345-1355, 2014.
  • M. Wang, X. Wang, Q. You, Y. Wu, X. Yang, H. Chen, B. Liu, Q. Hao, J. Zhang, X. Ma, “Dual-template synthesis of hierarchically layered titanosilicate-1 zeolites for catalytic epoxidation of cyclooctene”, Microporous and Mesoporous Materials, vol. 323, pp. 111207, 2021.
  • J. Shi, Y. Chen, T. Liu, H. Liang, “Preparation of mesoporous γ-Al2O3 catalysts by dual template method”, Journal of Dispersion Science and Technology, vol. 41, no. 10, pp. 1471-1479, 2020.
  • V. Şimşek, “Investigation of Catalytic Sustainability of Silica-Based Mesoporous Acidic Catalysts and Ion-Exchange Resins in Methyl Acetate Synthesis and Characterizations of Synthesized Catalysts”, Arabian Journal for Science and Engineering, vol. 44, no. 6, pp. 5301-5310, 2019.
  • A. Yüksel, “Levulinik Asit Üretimi İçin Selülozun Sıcak-Basınçlı Suda Hidrotermal Muamelesi”, Uludağ University Journal of The Faculty of Engineering, vol. 21, no. 2, pp. 415-415, 2016.
  • D. M. Oliveira A. S. Andrada, “Synthesis of ordered mesoporous silica MCM-41 with controlled morphology for potential application in controlled drug delivery systems”, Cerâmica, vol. 65, no. 374, pp. 170-179, 2019.
  • S. Musić, N. Filipović-Vinceković, L. Sekovanić, “Precipitation of amorphous SiO2 particles and their properties”, Brazilian Journal of Chemical Engineering, vol. 28, no. 1, pp. 89-94, 2011.
  • R. Maddalena, C. Hall, A. Hamilton, “Effect of silica particle size on the formation of calcium silicate hydrate [C-S-H] using thermal analysis”, Thermochimica Acta, vol. 672, pp. 142-149, 2019.
  • S. T. Pham, M. B. Nguyen, G. H. Le, T. T. T. Pham, T. T. T. Quan, T. D. Nguyen, T. L. Son, T. A. Vu, “Cellulose Conversion to 5 Hydroxymethyl Furfural (5-HMF) Using Al-Incorporated SBA-15 as Highly Efficient Catalyst”, Journal of Chemistry, vol. 2019, pp. 1-8, 2019.
  • B. K. Singh, R. Tomar, S. Kumar, A. Jain, B. S. Tomar, V. K. Manchanda, “Sorption of 137Cs, 133Ba and 154Eu by synthesized sodium aluminosilicate (Na-AS)”, Journal of Hazardous Materials, vol. 178, no. 1-3, pp. 771-776, 2010.
  • Y. Liu, F. Zeng, B. Sun, P. Jia, I. T. Graham, “Structural Characterizations of Aluminosilicates in Two Types of Fly Ash Samples from Shanxi Province, North China”, Minerals, vol. 9, no. 6, pp. 358, 2019.
  • J. Zheng, J. Ma, Y. Wang, Y. Bai, X. Zhang, R. Li, “Synthesis and Catalytic Property of a Zeolite Composite for Preparation of Dimethyl Ether from Methanol Dehydration”, Catalysis Letters, vol. 130, no. 3-4, pp. 672-678, 2009.
  • E. Soghrati, T. K. C. Ong, C. K. Poh, S. Kawi, A. Borgna, “Zeolite–supported nickel phyllosilicate catalyst for C O hydrogenolysis of cyclic ethers and polyols”, Applied Catalysis B: Environmental, vol. 235, pp. 130-142, 2018.
  • U. Tyagi, N. Anand, D. Kumar, “Synergistic effect of modified activated carbon and ionic liquid in the conversion of microcrystalline cellulose to 5-Hydroxymethyl Furfural”, Bioresource Technology, vol. 267, pp. 326-332, 2018.
  • F. Lai, F. Yan, P. Wang, S. Wang, S. Li, Z. Zhang, “Highly efficient conversion of cellulose into 5-hydroxymethylfurfural using temperature-responsive ChnH5-nCeW12O40 (n = 1–5) catalysts”, Chemical Engineering Journal, vol. 396, pp. 125282, 2020.
  • S. Zhao, M. Cheng, J. Li, J. Tian, X. Wang, “One pot production of 5-hydroxymethylfurfural with high yield from cellulose by a Brønsted–Lewis–surfactant-combined heteropolyacid catalyst”, Chemical Communications, vol. 47, no. 7, pp. 2176, 2011.
There are 49 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Articles
Authors

Halit Levent Hoşgün 0000-0002-6699-666X

Özlem Topçu 0000-0002-9756-4624

Emir Zafer Hoşgün 0000-0002-3810-701X

Berrin Bozan 0000-0002-3112-5784

Early Pub Date August 19, 2023
Publication Date August 25, 2023
Submission Date September 8, 2022
Acceptance Date April 24, 2023
Published in Issue Year 2023 Volume: 27 Issue: 4

Cite

APA Hoşgün, H. L., Topçu, Ö., Hoşgün, E. Z., Bozan, B. (2023). Conversion of Cellulose to 5-HMF in the Presence of Silica-Alumina Catalysts Synthesized by Dual Template at Low Temperature. Sakarya University Journal of Science, 27(4), 781-791. https://doi.org/10.16984/saufenbilder.1172543
AMA Hoşgün HL, Topçu Ö, Hoşgün EZ, Bozan B. Conversion of Cellulose to 5-HMF in the Presence of Silica-Alumina Catalysts Synthesized by Dual Template at Low Temperature. SAUJS. August 2023;27(4):781-791. doi:10.16984/saufenbilder.1172543
Chicago Hoşgün, Halit Levent, Özlem Topçu, Emir Zafer Hoşgün, and Berrin Bozan. “Conversion of Cellulose to 5-HMF in the Presence of Silica-Alumina Catalysts Synthesized by Dual Template at Low Temperature”. Sakarya University Journal of Science 27, no. 4 (August 2023): 781-91. https://doi.org/10.16984/saufenbilder.1172543.
EndNote Hoşgün HL, Topçu Ö, Hoşgün EZ, Bozan B (August 1, 2023) Conversion of Cellulose to 5-HMF in the Presence of Silica-Alumina Catalysts Synthesized by Dual Template at Low Temperature. Sakarya University Journal of Science 27 4 781–791.
IEEE H. L. Hoşgün, Ö. Topçu, E. Z. Hoşgün, and B. Bozan, “Conversion of Cellulose to 5-HMF in the Presence of Silica-Alumina Catalysts Synthesized by Dual Template at Low Temperature”, SAUJS, vol. 27, no. 4, pp. 781–791, 2023, doi: 10.16984/saufenbilder.1172543.
ISNAD Hoşgün, Halit Levent et al. “Conversion of Cellulose to 5-HMF in the Presence of Silica-Alumina Catalysts Synthesized by Dual Template at Low Temperature”. Sakarya University Journal of Science 27/4 (August 2023), 781-791. https://doi.org/10.16984/saufenbilder.1172543.
JAMA Hoşgün HL, Topçu Ö, Hoşgün EZ, Bozan B. Conversion of Cellulose to 5-HMF in the Presence of Silica-Alumina Catalysts Synthesized by Dual Template at Low Temperature. SAUJS. 2023;27:781–791.
MLA Hoşgün, Halit Levent et al. “Conversion of Cellulose to 5-HMF in the Presence of Silica-Alumina Catalysts Synthesized by Dual Template at Low Temperature”. Sakarya University Journal of Science, vol. 27, no. 4, 2023, pp. 781-9, doi:10.16984/saufenbilder.1172543.
Vancouver Hoşgün HL, Topçu Ö, Hoşgün EZ, Bozan B. Conversion of Cellulose to 5-HMF in the Presence of Silica-Alumina Catalysts Synthesized by Dual Template at Low Temperature. SAUJS. 2023;27(4):781-9.