Research Article
BibTex RIS Cite

Mulatu Numbers Which Are Concatenation of Two Fibonacci Numbers

Year 2023, Volume: 27 Issue: 5, 1122 - 1127, 18.10.2023
https://doi.org/10.16984/saufenbilder.1235571

Abstract

Let (M_k) be the sequence of Mulatu numbers defined by M_0=4, M_1=1, M_k=M_(k-1)+M_(k-2) and (F_k) be the Fibonacci sequence given by the recurrence F_k=F_(k-1)+F_(k-2) with the initial conditions F_0=0, F_1=1 for k≥2. In this paper, we showed that all Mulatu numbers, that are concatenations of two Fibonacci numbers are 11,28. That is, we solved the equation M_k=〖10〗^d F_m+F_n, where d indicates the number of digits of F_n. We found the solutions of this equation as (k,m,n,d)∈{(4,2,2,1),(6,3,6,1)}. Moreover the solutions of this equation displayed as M_4=(F_2 F_2 ) ̅=11 and M_6=(F_3 F_6 ) ̅=28. Here the main tools are linear forms in logarithms and Baker Davenport basis reduction method.

References

  • M. Lemma, ‘‘The Mulatu Numbers’’ Advances and Applications in Mathematical Sciences, vol. 10, no. 4, pp. 431-440, 2011.
  • W.D. Banks, F. Luca, ‘‘Concatenations with binary recurrent sequences’’ Journal of Integer Sequences, vol. 8, no. 5, pp. 1-3, 2005.
  • M. Alan, ‘‘On Concatenations of Fibonacci and Lucas Numbers’’ Bulletin of the Iranian Mathematical Society, vol. 48, no. 5, pp. 2725-2741, 2022.
  • M. Lemma, J. Lambrigt, “Some Fascinating theorems of Mulatu Numbers”, Hawai University International Conference, 2016.
  • N. Irmak, Z. Siar, R. Keskin, “On the sum of three arbitrary Fibonacci and Lucas numbers” Notes on Number Theory and Discrete Mathematics, vol. 25, no. 4, pp. 96-101, 2019.
  • Y. Bugeaud, ‘‘Linear Forms in Logarithms and Applications’’ IRMA Lectures in Mathematics and Theoretical Physics 28, Zurich, European Mathematical Society, 1-176, 2018.
  • Y. Bugeaud, M. Mignotte S. Siksek, ‘‘Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers’’ Annals of Mathematics, vol. 163, no. 3, pp. 969-1018, 2006.
  • J.J. Bravo, C.A. Gomez, F. Luca, ‘‘Powers of two as sums of two k-Fibonacci numbers’’ Miskolc Mathematical Notes, vol. 17, no. 1, pp. 85-100, 2016.
  • A. Dujella, A. Pethò, ‘‘A generalization of a theorem of Baker and Davenport’’ Quarterly Journal of Mathematics Oxford series (2), vol. 49, no. 3, pp. 291-306, 1998.
  • B. M. M. de Weger, ‘‘Algorithms for Diophantine Equations’’ CWI Tracts 65, Stichting Mathematisch Centrum, Amsterdam, 1-69, 1989.
Year 2023, Volume: 27 Issue: 5, 1122 - 1127, 18.10.2023
https://doi.org/10.16984/saufenbilder.1235571

Abstract

References

  • M. Lemma, ‘‘The Mulatu Numbers’’ Advances and Applications in Mathematical Sciences, vol. 10, no. 4, pp. 431-440, 2011.
  • W.D. Banks, F. Luca, ‘‘Concatenations with binary recurrent sequences’’ Journal of Integer Sequences, vol. 8, no. 5, pp. 1-3, 2005.
  • M. Alan, ‘‘On Concatenations of Fibonacci and Lucas Numbers’’ Bulletin of the Iranian Mathematical Society, vol. 48, no. 5, pp. 2725-2741, 2022.
  • M. Lemma, J. Lambrigt, “Some Fascinating theorems of Mulatu Numbers”, Hawai University International Conference, 2016.
  • N. Irmak, Z. Siar, R. Keskin, “On the sum of three arbitrary Fibonacci and Lucas numbers” Notes on Number Theory and Discrete Mathematics, vol. 25, no. 4, pp. 96-101, 2019.
  • Y. Bugeaud, ‘‘Linear Forms in Logarithms and Applications’’ IRMA Lectures in Mathematics and Theoretical Physics 28, Zurich, European Mathematical Society, 1-176, 2018.
  • Y. Bugeaud, M. Mignotte S. Siksek, ‘‘Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers’’ Annals of Mathematics, vol. 163, no. 3, pp. 969-1018, 2006.
  • J.J. Bravo, C.A. Gomez, F. Luca, ‘‘Powers of two as sums of two k-Fibonacci numbers’’ Miskolc Mathematical Notes, vol. 17, no. 1, pp. 85-100, 2016.
  • A. Dujella, A. Pethò, ‘‘A generalization of a theorem of Baker and Davenport’’ Quarterly Journal of Mathematics Oxford series (2), vol. 49, no. 3, pp. 291-306, 1998.
  • B. M. M. de Weger, ‘‘Algorithms for Diophantine Equations’’ CWI Tracts 65, Stichting Mathematisch Centrum, Amsterdam, 1-69, 1989.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Fatih Erduvan 0000-0001-7254-2296

Merve Güney Duman 0000-0002-6340-4817

Early Pub Date October 5, 2023
Publication Date October 18, 2023
Submission Date January 16, 2023
Acceptance Date June 8, 2023
Published in Issue Year 2023 Volume: 27 Issue: 5

Cite

APA Erduvan, F., & Güney Duman, M. (2023). Mulatu Numbers Which Are Concatenation of Two Fibonacci Numbers. Sakarya University Journal of Science, 27(5), 1122-1127. https://doi.org/10.16984/saufenbilder.1235571
AMA Erduvan F, Güney Duman M. Mulatu Numbers Which Are Concatenation of Two Fibonacci Numbers. SAUJS. October 2023;27(5):1122-1127. doi:10.16984/saufenbilder.1235571
Chicago Erduvan, Fatih, and Merve Güney Duman. “Mulatu Numbers Which Are Concatenation of Two Fibonacci Numbers”. Sakarya University Journal of Science 27, no. 5 (October 2023): 1122-27. https://doi.org/10.16984/saufenbilder.1235571.
EndNote Erduvan F, Güney Duman M (October 1, 2023) Mulatu Numbers Which Are Concatenation of Two Fibonacci Numbers. Sakarya University Journal of Science 27 5 1122–1127.
IEEE F. Erduvan and M. Güney Duman, “Mulatu Numbers Which Are Concatenation of Two Fibonacci Numbers”, SAUJS, vol. 27, no. 5, pp. 1122–1127, 2023, doi: 10.16984/saufenbilder.1235571.
ISNAD Erduvan, Fatih - Güney Duman, Merve. “Mulatu Numbers Which Are Concatenation of Two Fibonacci Numbers”. Sakarya University Journal of Science 27/5 (October 2023), 1122-1127. https://doi.org/10.16984/saufenbilder.1235571.
JAMA Erduvan F, Güney Duman M. Mulatu Numbers Which Are Concatenation of Two Fibonacci Numbers. SAUJS. 2023;27:1122–1127.
MLA Erduvan, Fatih and Merve Güney Duman. “Mulatu Numbers Which Are Concatenation of Two Fibonacci Numbers”. Sakarya University Journal of Science, vol. 27, no. 5, 2023, pp. 1122-7, doi:10.16984/saufenbilder.1235571.
Vancouver Erduvan F, Güney Duman M. Mulatu Numbers Which Are Concatenation of Two Fibonacci Numbers. SAUJS. 2023;27(5):1122-7.