Research Article
BibTex RIS Cite

Potential Anti-SARS-CoV-2 Effects of Gossypol and AT-101: Molecular Docking Study Against Angiotensin Converting Enzyme 2

Year 2024, Volume: 28 Issue: 2, 294 - 303, 30.04.2024
https://doi.org/10.16984/saufenbilder.1312911

Abstract

This study explores the potential anti-SARS-CoV-2 effects of gossypol (GP) and its AT-101 derivative through in silico molecular docking simulations. GP and AT-101 are natural and modified compounds, respectively, with promising biological activities. Using Autodock Vina software, molecular docking simulations were performed to assess the binding interactions between GP, AT-101, and the receptor binding domain of angiotensin-converting enzyme 2 (ACE2) which plays a vital role in facilitating viral entry into host cells. The docking results revealed that GP and AT-101 exhibited favorable interactions with ACE2, suggesting their potential as anti-SARS-CoV-2 agents. GP formed seven hydrogen bonds with ACE2, while AT-101 formed eight, indicating more stable binding and superior interaction. However, it is important to acknowledge that these findings are based on in silico modeling and further research is required to validate the antiviral properties of l and AT-101 in vitro and in vivo. Moreover, the long-term safety and efficacy of these compounds for COVID-19 treatment warrant further investigation through clinical trials. In conclusion, this in silico study provides preliminary evidence of the potential anti-SARS-CoV-2 effects of GP and AT-101 by demonstrating their ability to interact with ACE2. However, it is important to acknowledge that these findings are based on in silico modeling and further research is required to validate the antiviral properties of GP and AT-101 in vitro and in vivo.

References

  • [1] D. Pal, P. Sahu, G. Sethi, C. E. Wallace, A. Bishayee, “Gossypol and Its Natural Derivatives: Multitargeted Phytochemicals as Potential Drug Candidates for Oncologic Diseases,” Pharmaceutics, vol. 14, no. 12. 2022.
  • [2] J. A. Kenar, “Reaction chemistry of gossypol and its derivatives,” JAOCS, Journal of the American Oil Chemists’ Society, vol. 83, no. 4. 2006.
  • [3] I. C. N. Gadelha, N. B. S. Fonseca, S. C. S. Oloris, M. M. Melo, B. Soto-Blanco, “Gossypol toxicity from cottonseed products,” Scientific World Journal, vol. 2014. 2014.
  • [4] I. Marzo J. Naval, “Bcl-2 family members as molecular targets in cancer therapy,” Biochemical Pharmacology, vol. 76, no. 8. 2008.
  • [5] K. Balakrishnan, W. G. Wierda, M. J. Keating, V. Gandhi, “Gossypol, a BH3 mimetic, induces apoptosis in chronic lymphocytic leukemia cells,” Blood, vol. 112, no. 5, 2008.
  • [6] D. Caylioglu, R. J. Meyer, D. Hellmold, C. Kubelt, M. Synowitz, J. Held‐Feindt, “Effects of the anti‐tumorigenic agent at101 on human glioblastoma cells in the microenvironmental glioma stem cell niche,” International Journal of Molecular Science, vol. 22, no. 7, 2021.
  • [7] X. Pang, Wu, Y., Wu, Y., Lu, B., Chen, J., Wang, J., M., Liu, “(-)-Gossypol suppresses the growth of human prostate cancer xenografts via modulating VEGF signaling-mediated angiogenesis,” Molecular Cancer Therapeutics, vol. 10, no. 5, 2011.
  • [8] M. P. Kline, Rajkumar, S. V., Timm, M. M., Kimlinger, T. K., Haug, J. L., Lust, J. A., S. Kumar, “R-(-)-gossypol (AT-101) activates programmed cell death in multiple myeloma cells,” Experimental Hematology, vol. 36, no. 5, 2008.
  • [9] J. A. Macoska, S. Adsule, K. Tantivejkul, S. Wang, K. J. Pienta, C. T. Lee, “-(-)Gossypol promotes the apoptosis of bladder cancer cells in vitro,” Pharmacological research, vol. 58, no. 5–6, 2008.
  • [10] T. Ren Shan, J., Qing, Y., Qian, C., Li, Q., Lu, G., S. F., Zhou, “Sequential treatment with AT-101 enhances cisplatin chemosensitivity in human non-small cell lung cancer cells through inhibition of apurinic/apyrimidinic endonuclease I-activated IL-6/STAT3 signaling pathway,” Drug design, development and therapy, vol. 8, 2014.
  • [11] G. B. Patil, D. M. Borse, M. P. More, D. A. Patil, “Gossypol-Embedded Casein Nanoparticles for Potential Targeting of Ovarian Cancer: Formulation, Characterization, and Anticancer Activity,” Journal of Pharmaceutical Innovation, vol. 12, no.1, 2022.
  • [12] O. Renner, Mayer, M., Leischner, C., Burkard, M., Berger, A., Lauer, U. M., S. C. Bischoff, “Systematic Review of Gossypol/AT-101 in Cancer Clinical Trials,” Pharmaceuticals, vol. 15, no. 2, 2022.
  • [13] L. Li, Li, Z., Wang, K., Zhao, S., Feng, J., Li, J., Q. Wang, “Design, synthesis, and biological activities of aromatic gossypol schiff base derivatives,” Journal of agricultural and food chemistry, vol. 62, no. 46, 2014.
  • [14] J. Yang Chen, G., Li, L. L., Pan, W., Zhang, F., Yang, J., P. Tien, “Synthesis and anti-H5N1 activity of chiral gossypol derivatives and its analogs implicated by a viral entry blocking mechanism,” Bioorganic and medicinal chemistry letters, vol. 23, no. 9, 2013.
  • [15] A. J. Lopez-Denman, A. Russo, K. M. Wagstaff, P. A. White, D. A. Jans, J. M. Mackenzie, “Nucleocytoplasmic shuttling of the West Nile virus RNA-dependent RNA polymerase NS5 is critical to infection,” Cellular Microbiology, vol. 20, no. 8, 2018.
  • [16] S. C. Atkinson, Audsley, M. D., Lieu, K. G., Marsh, G. A., Thomas, D. R., Heaton, S. M., N. A., Borg, “Recognition by host nuclear transport proteins drives disorder-to-order transition in Hendra virus v,” Scientific Reports, vol. 8, no. 1, 2018.
  • [17] Y. Gao, Tai, W., Wang, X., Jiang, S., Debnath, A. K., Du, L., S. Chen, “A gossypol derivative effectively protects against Zika and dengue virus infection without toxicity,” BMC Biology, vol. 20, no. 1, 2022.
  • [18] W. Wang, Li, W., Wen, Z., Wang, C., Liu, W., Zhang, Y., Li, “Gossypol Broadly Inhibits Coronaviruses by Targeting RNA-Dependent RNA Polymerases,” Advanced Science, vol. 9, no. 35, 2022.
  • [19] Q. Wang, Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., J. Qi, “Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2,” Cell, vol. 181, no. 4, 2020.
  • [20] R. Wang, Zhang, Q., Ge, J., Ren, W., Zhang, R., Lan, J., Zhang, L. “Analysis of SARS-CoV-2 variant mutations reveals neutralization escape mechanisms and the ability to use ACE2 receptors from additional species,” Immunity, vol. 54, no. 7, 2021.
  • [21] E. Song, Zhang, C., Israelow, B., Lu-Culligan, A., Prado, A. V., Skriabine, S., A., Iwasaki, “Neuroinvasion of SARS-CoV-2 in human and mouse brain,” Journal of Experimental Medicine, vol. 218, no. 3, 2021.
  • [22] C. G. K. Ziegler, Allon, S. J., Nyquist, S. K., Mbano, I. M., Miao, V. N., Tzouanas, C. N., K. Zhang, “SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues,” Cell, vol. 181, no. 5, 2020.
  • [23] A. Basu, A. Sarkar, U. Maulik, “Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2,” Scientific Reports, vol. 10, no. 1, 2020.
  • [24] Z. Jin, Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., H. Yang, “Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors,” Nature, vol. 582, no. 7811, 2020.
  • [25] A. G. Junior, S. E. L. Tolouei, F. A. dos Reis Lívero, F. Gasparotto, T. Boeing, and P. de Souza, “Natural Agents Modulating ACE-2: A Review of Compounds with Potential against SARS-CoV-2 Infections,” Current Pharmaceutical Design, vol. 27, no. 13, 2021.
  • [26] S. Barage, Karthic, A., Bavi, R., Desai, N., Kumar, R., Kumar, V., K. W., Lee, “Identification and characterization of novel RdRp and Nsp15 inhibitors for SARS-COV2 using computational approach,” Journal of Biomolecular Structure and Dynamics, vol. 40, no. 6, 2022.
  • [27] J. O. Ogidigo, E. A. Iwuchukwu, C. U. Ibeji, O. Okpalefe, M. E. S. Soliman, “Natural phyto, compounds as possible noncovalent inhibitors against SARS-CoV2 protease: computational approach,” Journal of Biomolecular Structure and Dynamics, vol. 40, no. 5, 2022.
  • [28] F. Zhu, Qin, C., Tao, L., Liu, X., Shi, Z., Ma, X., Y. Chen, “Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting,” Proceedings of the National Academy of Sciences, vol. 108, no. 31, 2011.
  • [29] V. S. L. Goh, C. K. Mok, J. J. H. Chu, “Antiviral natural products for arbovirus infections,” Molecules, vol. 25, no. 12. 2020.
  • [30] M. F. Montenegro-Landívar, Tapia-Quirós, P., Vecino, X., Reig, M., Valderrama, C., Granados, M., J. Saurina, “Polyphenols and their potential role to fight viral diseases: An overview,” Science of the Total Environment, vol. 801. 2021.
  • [31] X. Y. Lim, B. P. Teh, T. Y. C. Tan, “Medicinal Plants in COVID-19: Potential and Limitations,” Frontiers in pharmacology, vol. 12, 2021.
  • [32] L. Li, Z. Li, K. Wang, Y. Liu, Y. Li, Q. Wang, “Synthesis and antiviral, insecticidal, and fungicidal activities of gossypol derivatives containing alkylimine, oxime or hydrazine moiety,” Bioorganic Medicinal Chemistry, vol. 24, no. 3, 2016.
  • [33] L. F. de Lima, J. O. de Oliveira, J. N. P. Carneiro, C. N. F. Lima, H. D. M. Coutinho, M. F. B. Morais-Braga, “Ethnobotanical and antimicrobial activities of the Gossypium (Cotton) genus: A review,” Journal of Ethnopharmacology, vol. 279. 2021.
  • [34] L. Simon, A. Imane, K. K. Srinivasan, L. Pathak, I. Daoud, “In Silico Drug-Designing Studies on Flavanoids as Anticolon Cancer Agents: Pharmacophore Mapping, Molecular Docking, and Monte Carlo Method-Based QSAR Modeling,” Interdisciplinary Sciences: Computational Life Sciences, vol. 9, no. 3, 2017.
  • [35] T. S. Lin, Schinazi, R., Griffith, B. P., August, E. M., Eriksson, B. F., Zheng, D. K., W. H. Prusoff, “Selective inhibition of human immunodeficiency virus type 1 replication by the (-) but not the (+) enantiomer of gossypol,” Antimicrobial agents and chemotherapy, vol. 33, no. 12, 1989.
  • [36] Y. Liu, L. Wang, L. Zhao, Y. Zhang, “Structure, properties of gossypol and its derivatives from physiological activities to drug discovery and drug design,” Natural Product Reports, vol. 39, no. 6. 2022.
  • [37] S. A. Gouhar Z. A. Elshahid, “Molecular docking and simulation studies of synthetic protease inhibitors against COVID-19: a computational study,” Journal of Biomolecular Structure and Dynamics, vol. 40, no. 24, 2022.
Year 2024, Volume: 28 Issue: 2, 294 - 303, 30.04.2024
https://doi.org/10.16984/saufenbilder.1312911

Abstract

References

  • [1] D. Pal, P. Sahu, G. Sethi, C. E. Wallace, A. Bishayee, “Gossypol and Its Natural Derivatives: Multitargeted Phytochemicals as Potential Drug Candidates for Oncologic Diseases,” Pharmaceutics, vol. 14, no. 12. 2022.
  • [2] J. A. Kenar, “Reaction chemistry of gossypol and its derivatives,” JAOCS, Journal of the American Oil Chemists’ Society, vol. 83, no. 4. 2006.
  • [3] I. C. N. Gadelha, N. B. S. Fonseca, S. C. S. Oloris, M. M. Melo, B. Soto-Blanco, “Gossypol toxicity from cottonseed products,” Scientific World Journal, vol. 2014. 2014.
  • [4] I. Marzo J. Naval, “Bcl-2 family members as molecular targets in cancer therapy,” Biochemical Pharmacology, vol. 76, no. 8. 2008.
  • [5] K. Balakrishnan, W. G. Wierda, M. J. Keating, V. Gandhi, “Gossypol, a BH3 mimetic, induces apoptosis in chronic lymphocytic leukemia cells,” Blood, vol. 112, no. 5, 2008.
  • [6] D. Caylioglu, R. J. Meyer, D. Hellmold, C. Kubelt, M. Synowitz, J. Held‐Feindt, “Effects of the anti‐tumorigenic agent at101 on human glioblastoma cells in the microenvironmental glioma stem cell niche,” International Journal of Molecular Science, vol. 22, no. 7, 2021.
  • [7] X. Pang, Wu, Y., Wu, Y., Lu, B., Chen, J., Wang, J., M., Liu, “(-)-Gossypol suppresses the growth of human prostate cancer xenografts via modulating VEGF signaling-mediated angiogenesis,” Molecular Cancer Therapeutics, vol. 10, no. 5, 2011.
  • [8] M. P. Kline, Rajkumar, S. V., Timm, M. M., Kimlinger, T. K., Haug, J. L., Lust, J. A., S. Kumar, “R-(-)-gossypol (AT-101) activates programmed cell death in multiple myeloma cells,” Experimental Hematology, vol. 36, no. 5, 2008.
  • [9] J. A. Macoska, S. Adsule, K. Tantivejkul, S. Wang, K. J. Pienta, C. T. Lee, “-(-)Gossypol promotes the apoptosis of bladder cancer cells in vitro,” Pharmacological research, vol. 58, no. 5–6, 2008.
  • [10] T. Ren Shan, J., Qing, Y., Qian, C., Li, Q., Lu, G., S. F., Zhou, “Sequential treatment with AT-101 enhances cisplatin chemosensitivity in human non-small cell lung cancer cells through inhibition of apurinic/apyrimidinic endonuclease I-activated IL-6/STAT3 signaling pathway,” Drug design, development and therapy, vol. 8, 2014.
  • [11] G. B. Patil, D. M. Borse, M. P. More, D. A. Patil, “Gossypol-Embedded Casein Nanoparticles for Potential Targeting of Ovarian Cancer: Formulation, Characterization, and Anticancer Activity,” Journal of Pharmaceutical Innovation, vol. 12, no.1, 2022.
  • [12] O. Renner, Mayer, M., Leischner, C., Burkard, M., Berger, A., Lauer, U. M., S. C. Bischoff, “Systematic Review of Gossypol/AT-101 in Cancer Clinical Trials,” Pharmaceuticals, vol. 15, no. 2, 2022.
  • [13] L. Li, Li, Z., Wang, K., Zhao, S., Feng, J., Li, J., Q. Wang, “Design, synthesis, and biological activities of aromatic gossypol schiff base derivatives,” Journal of agricultural and food chemistry, vol. 62, no. 46, 2014.
  • [14] J. Yang Chen, G., Li, L. L., Pan, W., Zhang, F., Yang, J., P. Tien, “Synthesis and anti-H5N1 activity of chiral gossypol derivatives and its analogs implicated by a viral entry blocking mechanism,” Bioorganic and medicinal chemistry letters, vol. 23, no. 9, 2013.
  • [15] A. J. Lopez-Denman, A. Russo, K. M. Wagstaff, P. A. White, D. A. Jans, J. M. Mackenzie, “Nucleocytoplasmic shuttling of the West Nile virus RNA-dependent RNA polymerase NS5 is critical to infection,” Cellular Microbiology, vol. 20, no. 8, 2018.
  • [16] S. C. Atkinson, Audsley, M. D., Lieu, K. G., Marsh, G. A., Thomas, D. R., Heaton, S. M., N. A., Borg, “Recognition by host nuclear transport proteins drives disorder-to-order transition in Hendra virus v,” Scientific Reports, vol. 8, no. 1, 2018.
  • [17] Y. Gao, Tai, W., Wang, X., Jiang, S., Debnath, A. K., Du, L., S. Chen, “A gossypol derivative effectively protects against Zika and dengue virus infection without toxicity,” BMC Biology, vol. 20, no. 1, 2022.
  • [18] W. Wang, Li, W., Wen, Z., Wang, C., Liu, W., Zhang, Y., Li, “Gossypol Broadly Inhibits Coronaviruses by Targeting RNA-Dependent RNA Polymerases,” Advanced Science, vol. 9, no. 35, 2022.
  • [19] Q. Wang, Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., J. Qi, “Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2,” Cell, vol. 181, no. 4, 2020.
  • [20] R. Wang, Zhang, Q., Ge, J., Ren, W., Zhang, R., Lan, J., Zhang, L. “Analysis of SARS-CoV-2 variant mutations reveals neutralization escape mechanisms and the ability to use ACE2 receptors from additional species,” Immunity, vol. 54, no. 7, 2021.
  • [21] E. Song, Zhang, C., Israelow, B., Lu-Culligan, A., Prado, A. V., Skriabine, S., A., Iwasaki, “Neuroinvasion of SARS-CoV-2 in human and mouse brain,” Journal of Experimental Medicine, vol. 218, no. 3, 2021.
  • [22] C. G. K. Ziegler, Allon, S. J., Nyquist, S. K., Mbano, I. M., Miao, V. N., Tzouanas, C. N., K. Zhang, “SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues,” Cell, vol. 181, no. 5, 2020.
  • [23] A. Basu, A. Sarkar, U. Maulik, “Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2,” Scientific Reports, vol. 10, no. 1, 2020.
  • [24] Z. Jin, Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., H. Yang, “Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors,” Nature, vol. 582, no. 7811, 2020.
  • [25] A. G. Junior, S. E. L. Tolouei, F. A. dos Reis Lívero, F. Gasparotto, T. Boeing, and P. de Souza, “Natural Agents Modulating ACE-2: A Review of Compounds with Potential against SARS-CoV-2 Infections,” Current Pharmaceutical Design, vol. 27, no. 13, 2021.
  • [26] S. Barage, Karthic, A., Bavi, R., Desai, N., Kumar, R., Kumar, V., K. W., Lee, “Identification and characterization of novel RdRp and Nsp15 inhibitors for SARS-COV2 using computational approach,” Journal of Biomolecular Structure and Dynamics, vol. 40, no. 6, 2022.
  • [27] J. O. Ogidigo, E. A. Iwuchukwu, C. U. Ibeji, O. Okpalefe, M. E. S. Soliman, “Natural phyto, compounds as possible noncovalent inhibitors against SARS-CoV2 protease: computational approach,” Journal of Biomolecular Structure and Dynamics, vol. 40, no. 5, 2022.
  • [28] F. Zhu, Qin, C., Tao, L., Liu, X., Shi, Z., Ma, X., Y. Chen, “Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting,” Proceedings of the National Academy of Sciences, vol. 108, no. 31, 2011.
  • [29] V. S. L. Goh, C. K. Mok, J. J. H. Chu, “Antiviral natural products for arbovirus infections,” Molecules, vol. 25, no. 12. 2020.
  • [30] M. F. Montenegro-Landívar, Tapia-Quirós, P., Vecino, X., Reig, M., Valderrama, C., Granados, M., J. Saurina, “Polyphenols and their potential role to fight viral diseases: An overview,” Science of the Total Environment, vol. 801. 2021.
  • [31] X. Y. Lim, B. P. Teh, T. Y. C. Tan, “Medicinal Plants in COVID-19: Potential and Limitations,” Frontiers in pharmacology, vol. 12, 2021.
  • [32] L. Li, Z. Li, K. Wang, Y. Liu, Y. Li, Q. Wang, “Synthesis and antiviral, insecticidal, and fungicidal activities of gossypol derivatives containing alkylimine, oxime or hydrazine moiety,” Bioorganic Medicinal Chemistry, vol. 24, no. 3, 2016.
  • [33] L. F. de Lima, J. O. de Oliveira, J. N. P. Carneiro, C. N. F. Lima, H. D. M. Coutinho, M. F. B. Morais-Braga, “Ethnobotanical and antimicrobial activities of the Gossypium (Cotton) genus: A review,” Journal of Ethnopharmacology, vol. 279. 2021.
  • [34] L. Simon, A. Imane, K. K. Srinivasan, L. Pathak, I. Daoud, “In Silico Drug-Designing Studies on Flavanoids as Anticolon Cancer Agents: Pharmacophore Mapping, Molecular Docking, and Monte Carlo Method-Based QSAR Modeling,” Interdisciplinary Sciences: Computational Life Sciences, vol. 9, no. 3, 2017.
  • [35] T. S. Lin, Schinazi, R., Griffith, B. P., August, E. M., Eriksson, B. F., Zheng, D. K., W. H. Prusoff, “Selective inhibition of human immunodeficiency virus type 1 replication by the (-) but not the (+) enantiomer of gossypol,” Antimicrobial agents and chemotherapy, vol. 33, no. 12, 1989.
  • [36] Y. Liu, L. Wang, L. Zhao, Y. Zhang, “Structure, properties of gossypol and its derivatives from physiological activities to drug discovery and drug design,” Natural Product Reports, vol. 39, no. 6. 2022.
  • [37] S. A. Gouhar Z. A. Elshahid, “Molecular docking and simulation studies of synthetic protease inhibitors against COVID-19: a computational study,” Journal of Biomolecular Structure and Dynamics, vol. 40, no. 24, 2022.
There are 37 citations in total.

Details

Primary Language English
Subjects Structural Biology, Biochemistry and Cell Biology (Other)
Journal Section Research Articles
Authors

Süleyman İlhan 0000-0002-6584-3979

Harika Atmaca İlhan 0000-0002-8459-4373

Early Pub Date April 22, 2024
Publication Date April 30, 2024
Submission Date June 11, 2023
Acceptance Date January 16, 2024
Published in Issue Year 2024 Volume: 28 Issue: 2

Cite

APA İlhan, S., & Atmaca İlhan, H. (2024). Potential Anti-SARS-CoV-2 Effects of Gossypol and AT-101: Molecular Docking Study Against Angiotensin Converting Enzyme 2. Sakarya University Journal of Science, 28(2), 294-303. https://doi.org/10.16984/saufenbilder.1312911
AMA İlhan S, Atmaca İlhan H. Potential Anti-SARS-CoV-2 Effects of Gossypol and AT-101: Molecular Docking Study Against Angiotensin Converting Enzyme 2. SAUJS. April 2024;28(2):294-303. doi:10.16984/saufenbilder.1312911
Chicago İlhan, Süleyman, and Harika Atmaca İlhan. “Potential Anti-SARS-CoV-2 Effects of Gossypol and AT-101: Molecular Docking Study Against Angiotensin Converting Enzyme 2”. Sakarya University Journal of Science 28, no. 2 (April 2024): 294-303. https://doi.org/10.16984/saufenbilder.1312911.
EndNote İlhan S, Atmaca İlhan H (April 1, 2024) Potential Anti-SARS-CoV-2 Effects of Gossypol and AT-101: Molecular Docking Study Against Angiotensin Converting Enzyme 2. Sakarya University Journal of Science 28 2 294–303.
IEEE S. İlhan and H. Atmaca İlhan, “Potential Anti-SARS-CoV-2 Effects of Gossypol and AT-101: Molecular Docking Study Against Angiotensin Converting Enzyme 2”, SAUJS, vol. 28, no. 2, pp. 294–303, 2024, doi: 10.16984/saufenbilder.1312911.
ISNAD İlhan, Süleyman - Atmaca İlhan, Harika. “Potential Anti-SARS-CoV-2 Effects of Gossypol and AT-101: Molecular Docking Study Against Angiotensin Converting Enzyme 2”. Sakarya University Journal of Science 28/2 (April 2024), 294-303. https://doi.org/10.16984/saufenbilder.1312911.
JAMA İlhan S, Atmaca İlhan H. Potential Anti-SARS-CoV-2 Effects of Gossypol and AT-101: Molecular Docking Study Against Angiotensin Converting Enzyme 2. SAUJS. 2024;28:294–303.
MLA İlhan, Süleyman and Harika Atmaca İlhan. “Potential Anti-SARS-CoV-2 Effects of Gossypol and AT-101: Molecular Docking Study Against Angiotensin Converting Enzyme 2”. Sakarya University Journal of Science, vol. 28, no. 2, 2024, pp. 294-03, doi:10.16984/saufenbilder.1312911.
Vancouver İlhan S, Atmaca İlhan H. Potential Anti-SARS-CoV-2 Effects of Gossypol and AT-101: Molecular Docking Study Against Angiotensin Converting Enzyme 2. SAUJS. 2024;28(2):294-303.