Research Article
BibTex RIS Cite

A Note on the Laplacian Energy of the Power Graph of a Finite Cyclic Group

Year 2024, Volume: 28 Issue: 2, 431 - 437, 30.04.2024
https://doi.org/10.16984/saufenbilder.1369766

Abstract

In this study, the Laplacian matrix concept for the power graph of a finite cyclic group is redefined by considering the block matrix structure. Then, with the help of the eigenvalues of the Laplacian matrix in question, the concept of Laplacian energy for the power graphs of finite cyclic groups was defined and introduced into the literature. In addition, boundary studies were carried out for the Laplacian energy in question using the concepts the trace of a matrix, the Cauchy-Schwarz inequality, the relationship between the arithmetic mean and geometric mean, and determinant. Later, various results were obtained for the Laplacian energy in question for cases where the order of a cyclic group is the positive integer power of a prime.

References

  • [1] A. V. Kelarev, S. J. Quinn, “A Combinatorial Property and Power Graphs of Groups,” Contribibutions to General Algebra, vol. 12, pp. 229-235, 2000.
  • [2] A. V. Kelarev, S. J. Quinn, “Directed Graphs and Combinatorial Properties of Semigroups,” Journal of Algebra, vol. 251, no. 1, pp. 16-26, 2002.
  • [3] A. V. Kelarev, S. J. Quinn, “A Combinatorial Property and Power Graphs of Semigroups,” Commentationes Mathematicae Universitatis Carolinae, vol. 45, no. 1, pp. 1-7, 2004.
  • [4] I. Chakrabarty, S. Ghosh, M. K. Sen, “Undirected Power Graphs of Semigroups,” Semigroup Forum, vol. 78, pp. 410-426, 2009.
  • [5] P. J. Cameron, “The Power Graph of AFinite Group II.,” Journal of Group Theory, vol. 13, no. 6, pp. 779-783, 2010.
  • [6] P. J. Cameron, S. Ghosh, “The Power Graph of A Finite Group,” Discrete Mathematics, vol. 311, no. 13, pp. 1220-1222, 2011.
  • [7] S. Chattopadhyay, P. Panigrahi, F. Atik, “Spectral Radius of Power Graphs on Certain Finite Groups,” Indagationes Mathematicae, vol.29, no. 2, pp. 730-737, 2018.
  • [8] I. Gutman, “The Energy of Graph,” Berichteder Mathematisch Statistischen Sektion im Forschungszentrum Graz, vol. 103, pp. 1-22, 1978.
  • [9] I. Gutman, B. Zhou, “Laplacian Energy of AGraph,” Linear Algebra and its Applications, vol. 414, no. 1, pp. 29-37, 2006.
Year 2024, Volume: 28 Issue: 2, 431 - 437, 30.04.2024
https://doi.org/10.16984/saufenbilder.1369766

Abstract

References

  • [1] A. V. Kelarev, S. J. Quinn, “A Combinatorial Property and Power Graphs of Groups,” Contribibutions to General Algebra, vol. 12, pp. 229-235, 2000.
  • [2] A. V. Kelarev, S. J. Quinn, “Directed Graphs and Combinatorial Properties of Semigroups,” Journal of Algebra, vol. 251, no. 1, pp. 16-26, 2002.
  • [3] A. V. Kelarev, S. J. Quinn, “A Combinatorial Property and Power Graphs of Semigroups,” Commentationes Mathematicae Universitatis Carolinae, vol. 45, no. 1, pp. 1-7, 2004.
  • [4] I. Chakrabarty, S. Ghosh, M. K. Sen, “Undirected Power Graphs of Semigroups,” Semigroup Forum, vol. 78, pp. 410-426, 2009.
  • [5] P. J. Cameron, “The Power Graph of AFinite Group II.,” Journal of Group Theory, vol. 13, no. 6, pp. 779-783, 2010.
  • [6] P. J. Cameron, S. Ghosh, “The Power Graph of A Finite Group,” Discrete Mathematics, vol. 311, no. 13, pp. 1220-1222, 2011.
  • [7] S. Chattopadhyay, P. Panigrahi, F. Atik, “Spectral Radius of Power Graphs on Certain Finite Groups,” Indagationes Mathematicae, vol.29, no. 2, pp. 730-737, 2018.
  • [8] I. Gutman, “The Energy of Graph,” Berichteder Mathematisch Statistischen Sektion im Forschungszentrum Graz, vol. 103, pp. 1-22, 1978.
  • [9] I. Gutman, B. Zhou, “Laplacian Energy of AGraph,” Linear Algebra and its Applications, vol. 414, no. 1, pp. 29-37, 2006.
There are 9 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory, Pure Mathematics (Other)
Journal Section Research Articles
Authors

Nurşah Mutlu Varlıoğlu 0000-0003-0873-6277

Şerife Büyükköse 0000-0001-7629-4277

Early Pub Date April 26, 2024
Publication Date April 30, 2024
Submission Date October 2, 2023
Acceptance Date January 31, 2024
Published in Issue Year 2024 Volume: 28 Issue: 2

Cite

APA Mutlu Varlıoğlu, N., & Büyükköse, Ş. (2024). A Note on the Laplacian Energy of the Power Graph of a Finite Cyclic Group. Sakarya University Journal of Science, 28(2), 431-437. https://doi.org/10.16984/saufenbilder.1369766
AMA Mutlu Varlıoğlu N, Büyükköse Ş. A Note on the Laplacian Energy of the Power Graph of a Finite Cyclic Group. SAUJS. April 2024;28(2):431-437. doi:10.16984/saufenbilder.1369766
Chicago Mutlu Varlıoğlu, Nurşah, and Şerife Büyükköse. “A Note on the Laplacian Energy of the Power Graph of a Finite Cyclic Group”. Sakarya University Journal of Science 28, no. 2 (April 2024): 431-37. https://doi.org/10.16984/saufenbilder.1369766.
EndNote Mutlu Varlıoğlu N, Büyükköse Ş (April 1, 2024) A Note on the Laplacian Energy of the Power Graph of a Finite Cyclic Group. Sakarya University Journal of Science 28 2 431–437.
IEEE N. Mutlu Varlıoğlu and Ş. Büyükköse, “A Note on the Laplacian Energy of the Power Graph of a Finite Cyclic Group”, SAUJS, vol. 28, no. 2, pp. 431–437, 2024, doi: 10.16984/saufenbilder.1369766.
ISNAD Mutlu Varlıoğlu, Nurşah - Büyükköse, Şerife. “A Note on the Laplacian Energy of the Power Graph of a Finite Cyclic Group”. Sakarya University Journal of Science 28/2 (April 2024), 431-437. https://doi.org/10.16984/saufenbilder.1369766.
JAMA Mutlu Varlıoğlu N, Büyükköse Ş. A Note on the Laplacian Energy of the Power Graph of a Finite Cyclic Group. SAUJS. 2024;28:431–437.
MLA Mutlu Varlıoğlu, Nurşah and Şerife Büyükköse. “A Note on the Laplacian Energy of the Power Graph of a Finite Cyclic Group”. Sakarya University Journal of Science, vol. 28, no. 2, 2024, pp. 431-7, doi:10.16984/saufenbilder.1369766.
Vancouver Mutlu Varlıoğlu N, Büyükköse Ş. A Note on the Laplacian Energy of the Power Graph of a Finite Cyclic Group. SAUJS. 2024;28(2):431-7.