Research Article
BibTex RIS Cite

Investigation of the Effect of High-Frequency Induction Sintering on Phase Structure and Microstructure of SiC Reinforced Aluminum Matrix Composites

Year 2024, Volume: 28 Issue: 3, 550 - 557, 30.06.2024
https://doi.org/10.16984/saufenbilder.1363032

Abstract

In this study, SiC-reinforced aluminum matrix composites were powder metallurgically (PM) prepared and sintered using high-frequency induction system (HFIS). The samples with different ratios of SiC (wt.%10, 20 and 40) added to the aluminum matrix were sintered at 660, 800, and 1000 °C. In addition, Al/SiC composites were compared by sintering with the conventional sintering (CS) method under similar sintering conditions. The heating rate for the sintering process using HFIS was 500 °C/min, while the CS method used a heating rate of 10 °C/min. The effect of the temperature and SiC ratio on the density, hardness, phase structure, and microstructure of composites was investigated. The optimum sintering temperature was determined according to the SiC additive amount. When 10%, 20%, and 40% SiC by weight were added to the aluminum matrix in the sintering process with HFIS, the required sintering temperatures were determined as 660, 800, and 1000 °C, respectively. While new phases were not formed as a result of short-term HFIS sintering, a high-temperature Al4C3 phase was detected in CS sintering. HFIS sintered Al/SiC composite samples were obtained in Al and SiC phases with high density and hardness ranging from 43-118 HV. In the high-temperature sintering process with HFIS, the formation of Al4C3 was prevented and its physical and mechanical properties were improved.

Supporting Institution

Manisa Celal Byar University

Project Number

2014-087

Thanks

This study was supported by the Scientific Research Projects Coordination Unit of Manisa Celal Bayar University within the scope of the project numbered 2014-087.

References

  • [1] S. Sursha, B. K. Sridhara, Wear characteristics of hybrd aluminium matrix composites reinforced with graphite and silicon carbide particulates. Composites science and Technology, vol 70, pp, 1652-1659, 2010.
  • [2] Y. Xie, Y. Huang, F. Wang, X. Meng, J. Li, Z. Dong, J. Cao, Deformation-driven metallurgy of SiC nanoparticle reinforced aluminum matrix nanocomposites, Journal of Alloys and Compounds, vol. 823, pp, 153741 2020.
  • [3] L. Zhang, X. Hanqing, Z. Wang, Q. Li, J. Wu, Mechanical properties and corrosion behavior of Al/SiC composites, Journal of Alloys and Compounds, vol. 678 pp, 23-30, 2016.
  • [4] Z. Xiu, W. Yang, R. Dong, M. Hussain, L. Jiang, Y. Liu, G. Wu, Microstructure and mechanical properties of 45 vol.% SiCp/7075Al composite, Journal of Materials Science & Technology, vol. 31, pp, 930-934, 2015.
  • [5] K. M. Sree Manu, L. Ajay Raag, T. P. D. Rajan, B. C. Pai, V. Petley, S. N. Verma, Self-lubricating bidirectional carbon fiber reinforced smart aluminum composites by squeeze infiltration process, Journal of Materials Science & Technology, vol. 35, pp, 2559-2569, 2019.
  • [6] Y. S. Yi, Y. Meng, D. Q. Li, S. Sugiyama, J. Yanagimoto, Partial melting behavior and thixoforming properties of extruded magnesium alloy AZ91 with and without addition of SiC particles with a volume fraction of 15%, Journal of Materials Science & Technology, vol. 34, pp, 1149-1161, 2018.
  • [7] Z. Hu, F. Chen, J. Xu, Q. Nian, D. Lin, C. Chen, X. Zhu, Y. Chen, M. Zhang, 3D printing graphene-aluminum nanocomposites, Journal of Alloys and Compounds, vol. 746, pp, 269-276, 2018.
  • [8] P. Jin, B. Xiao, Q. Wang, Z. Ma, Y. Liu, S. Li, Effect of hot extrusion on interfacial microstructure and tensile properties of SiCp/2009Al composites fabricated at different hot-pressing temperatures, Journal of Materials Science & Technology, vol. 27 pp, 518-524, 2011.
  • [9] Z. M. Xu, N. L. Loh, W. Zhou, Hot isostatic pressing of cast SiCp-reinforced aluminium-based composites, Journal of Materials Processing Technology, vol. 67, pp, 131-136, 1997.
  • [10] X. P. Li, C. Y. Liu, M. Z. Ma, R. P. Liu, Microstructures and mechanical properties of AA6061-SiC composites prepared through spark plasma sintering and hotrolling, Materials Science and Engineering: A, vol. 650, pp, 139-144, 2016.
  • [11] A. M. Samuel, H. Liu, F. H. Samuel, Effect of melt, solidification and heat treatment processing parameters on the properties of AI-Si-Mg/SiC(p) composites, Journal of Materials Science, vol. 28, pp, 6785–6798, 1993.
  • [12] V. K. Singh, S. Chauhan, P. C. Gope. A. K. Chaudhary. Enhancement of Wettability of Aluminum Based Silicon Carbide Reinforced Particulate Metal Matrix Composite. High Temperature Materials and Processes. vol. 34, no 2, pp, 163–170, 2015.
  • [13] A. Riquelme, P. Rodrigo, M. D. Escalera-Rodríguez, J. Rams. Characterisation and mechanical properties of Al/SiC metal matrix composite coatings formed on ZE41 magnesium alloys by laser cladding, Results in Physics, vol. 13 pp, 102, 2019.
  • [14] C. Hsieh, Y. Ho, H. Wang, S. Sugiyama, J. Yanagimato, Mechanical and tribological characterization of nanostructured graphene sheets/A6061 composites fabricated by induction sintering and hot extrusion, Materials Science and Engineering: A, vol. 786, pp, 1-8, 2020.
  • [15] J. Liu, B. Zhou, L. Xu, Z. Han, J. Zhou, Fabrication of SiC reinforced aluminium metal matrix composites through microwave sintering, Materials Research Express vol. 7 pp, 125101, 2020.
  • [16] M. Dhanashekar, P. Loganathan, S. Ayyanar, S. R. Mohan, T. Sathish, Mechanical and wear behaviour of AA6061/SiC composites fabricated by powder metallurgy method, Materials Today: roceedings, vol. 21, pp, 1008–1012, 2020.
  • [17] H. Wanga, R. Zhanga, X. Hua, C. Wangb, Y. Huang, Characterization of a powder metallurgy SiC/Cu–Al composite, Journal of Materials Processing Technology, vol.197 pp, 43–48, 2008.
  • [18] M. Rodrı´guez-Reyes, M. I. Pech-Canul, J. C. Rendo´n-Angeles, J. Lo´pez-Cuevas, Limiting the development of Al4C3 to prevent degradation of Al/SiCp composites processed by pressureless infiltration, Composites Science and Technology, vol. 66 pp, 1056–1062, 2006.
  • [19] M. Hoseini, M. Meratian, Fabrication of in situ aluminum–alumina composite with glass powder, Journal of Alloys and Compounds, vol. 471 pp, 378–382, 2009.
  • [20] P. Wang, G. Chen, L. Jiang, D. Li, G. Wu, Effect of thermal exposure on the microstructure of the interface in a Grf/Al composite, Science and Engineering of Composite Materials, vol. 23, no 6, pp, 751–757, 2016.
  • [21] Sumarji, N. F. Albajil, M. Darsin, R. R. Sakura, A. Sanata, Effect of Variation of SiC and Mg Mass Fraction on Mechanical Properties of Al-SiC Composite Using Stir Casting Method, Journal of Mechanical Engineering Science and Technology vol. 6, pp. 23-33, 2022.
  • [22] A. Canakci, T. Varol, Microstructure and properties of AA7075/Al–SiC composites fabricated using powder metallurgy and hot pressing, Powder Technology, vol. 268, no 72–79, 2014.
  • [23] K. Bravilin Jiju, G. Selvakumar, S. Ram Prakash, Study on preparation of Al – SiC metal matrix composites using powder metallurgy technique and its mechanical properties, Materials Today: Proceedings, vol. 27 pp, 1843–1847, 2020.
  • [24] A. Wąsik, B. Leszczyńska-Madej, M. Madej, The influence of SiC particle size on mechanical properties of aluminium matrix composites, Metallurgy and Foundry Engineering, vol. 43, pp, 41–49, 2017.
  • [25] P. Ajagol, A. B. N, R. N. Marigoudar, P. K. G. V., Effect of SiC Reinforcement on Microstructure and Mechanical Properties of Aluminum Metal Matrix Composite, IOP Conf. Series: Materials Science and Engineering vol. 376 pp. 012057, 2018.
Year 2024, Volume: 28 Issue: 3, 550 - 557, 30.06.2024
https://doi.org/10.16984/saufenbilder.1363032

Abstract

Project Number

2014-087

References

  • [1] S. Sursha, B. K. Sridhara, Wear characteristics of hybrd aluminium matrix composites reinforced with graphite and silicon carbide particulates. Composites science and Technology, vol 70, pp, 1652-1659, 2010.
  • [2] Y. Xie, Y. Huang, F. Wang, X. Meng, J. Li, Z. Dong, J. Cao, Deformation-driven metallurgy of SiC nanoparticle reinforced aluminum matrix nanocomposites, Journal of Alloys and Compounds, vol. 823, pp, 153741 2020.
  • [3] L. Zhang, X. Hanqing, Z. Wang, Q. Li, J. Wu, Mechanical properties and corrosion behavior of Al/SiC composites, Journal of Alloys and Compounds, vol. 678 pp, 23-30, 2016.
  • [4] Z. Xiu, W. Yang, R. Dong, M. Hussain, L. Jiang, Y. Liu, G. Wu, Microstructure and mechanical properties of 45 vol.% SiCp/7075Al composite, Journal of Materials Science & Technology, vol. 31, pp, 930-934, 2015.
  • [5] K. M. Sree Manu, L. Ajay Raag, T. P. D. Rajan, B. C. Pai, V. Petley, S. N. Verma, Self-lubricating bidirectional carbon fiber reinforced smart aluminum composites by squeeze infiltration process, Journal of Materials Science & Technology, vol. 35, pp, 2559-2569, 2019.
  • [6] Y. S. Yi, Y. Meng, D. Q. Li, S. Sugiyama, J. Yanagimoto, Partial melting behavior and thixoforming properties of extruded magnesium alloy AZ91 with and without addition of SiC particles with a volume fraction of 15%, Journal of Materials Science & Technology, vol. 34, pp, 1149-1161, 2018.
  • [7] Z. Hu, F. Chen, J. Xu, Q. Nian, D. Lin, C. Chen, X. Zhu, Y. Chen, M. Zhang, 3D printing graphene-aluminum nanocomposites, Journal of Alloys and Compounds, vol. 746, pp, 269-276, 2018.
  • [8] P. Jin, B. Xiao, Q. Wang, Z. Ma, Y. Liu, S. Li, Effect of hot extrusion on interfacial microstructure and tensile properties of SiCp/2009Al composites fabricated at different hot-pressing temperatures, Journal of Materials Science & Technology, vol. 27 pp, 518-524, 2011.
  • [9] Z. M. Xu, N. L. Loh, W. Zhou, Hot isostatic pressing of cast SiCp-reinforced aluminium-based composites, Journal of Materials Processing Technology, vol. 67, pp, 131-136, 1997.
  • [10] X. P. Li, C. Y. Liu, M. Z. Ma, R. P. Liu, Microstructures and mechanical properties of AA6061-SiC composites prepared through spark plasma sintering and hotrolling, Materials Science and Engineering: A, vol. 650, pp, 139-144, 2016.
  • [11] A. M. Samuel, H. Liu, F. H. Samuel, Effect of melt, solidification and heat treatment processing parameters on the properties of AI-Si-Mg/SiC(p) composites, Journal of Materials Science, vol. 28, pp, 6785–6798, 1993.
  • [12] V. K. Singh, S. Chauhan, P. C. Gope. A. K. Chaudhary. Enhancement of Wettability of Aluminum Based Silicon Carbide Reinforced Particulate Metal Matrix Composite. High Temperature Materials and Processes. vol. 34, no 2, pp, 163–170, 2015.
  • [13] A. Riquelme, P. Rodrigo, M. D. Escalera-Rodríguez, J. Rams. Characterisation and mechanical properties of Al/SiC metal matrix composite coatings formed on ZE41 magnesium alloys by laser cladding, Results in Physics, vol. 13 pp, 102, 2019.
  • [14] C. Hsieh, Y. Ho, H. Wang, S. Sugiyama, J. Yanagimato, Mechanical and tribological characterization of nanostructured graphene sheets/A6061 composites fabricated by induction sintering and hot extrusion, Materials Science and Engineering: A, vol. 786, pp, 1-8, 2020.
  • [15] J. Liu, B. Zhou, L. Xu, Z. Han, J. Zhou, Fabrication of SiC reinforced aluminium metal matrix composites through microwave sintering, Materials Research Express vol. 7 pp, 125101, 2020.
  • [16] M. Dhanashekar, P. Loganathan, S. Ayyanar, S. R. Mohan, T. Sathish, Mechanical and wear behaviour of AA6061/SiC composites fabricated by powder metallurgy method, Materials Today: roceedings, vol. 21, pp, 1008–1012, 2020.
  • [17] H. Wanga, R. Zhanga, X. Hua, C. Wangb, Y. Huang, Characterization of a powder metallurgy SiC/Cu–Al composite, Journal of Materials Processing Technology, vol.197 pp, 43–48, 2008.
  • [18] M. Rodrı´guez-Reyes, M. I. Pech-Canul, J. C. Rendo´n-Angeles, J. Lo´pez-Cuevas, Limiting the development of Al4C3 to prevent degradation of Al/SiCp composites processed by pressureless infiltration, Composites Science and Technology, vol. 66 pp, 1056–1062, 2006.
  • [19] M. Hoseini, M. Meratian, Fabrication of in situ aluminum–alumina composite with glass powder, Journal of Alloys and Compounds, vol. 471 pp, 378–382, 2009.
  • [20] P. Wang, G. Chen, L. Jiang, D. Li, G. Wu, Effect of thermal exposure on the microstructure of the interface in a Grf/Al composite, Science and Engineering of Composite Materials, vol. 23, no 6, pp, 751–757, 2016.
  • [21] Sumarji, N. F. Albajil, M. Darsin, R. R. Sakura, A. Sanata, Effect of Variation of SiC and Mg Mass Fraction on Mechanical Properties of Al-SiC Composite Using Stir Casting Method, Journal of Mechanical Engineering Science and Technology vol. 6, pp. 23-33, 2022.
  • [22] A. Canakci, T. Varol, Microstructure and properties of AA7075/Al–SiC composites fabricated using powder metallurgy and hot pressing, Powder Technology, vol. 268, no 72–79, 2014.
  • [23] K. Bravilin Jiju, G. Selvakumar, S. Ram Prakash, Study on preparation of Al – SiC metal matrix composites using powder metallurgy technique and its mechanical properties, Materials Today: Proceedings, vol. 27 pp, 1843–1847, 2020.
  • [24] A. Wąsik, B. Leszczyńska-Madej, M. Madej, The influence of SiC particle size on mechanical properties of aluminium matrix composites, Metallurgy and Foundry Engineering, vol. 43, pp, 41–49, 2017.
  • [25] P. Ajagol, A. B. N, R. N. Marigoudar, P. K. G. V., Effect of SiC Reinforcement on Microstructure and Mechanical Properties of Aluminum Metal Matrix Composite, IOP Conf. Series: Materials Science and Engineering vol. 376 pp. 012057, 2018.
There are 25 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Research Articles
Authors

Muhterem Koç 0000-0003-3661-4410

Mehmet Sadrettin Zeybek 0000-0002-4753-1226

Project Number 2014-087
Early Pub Date June 6, 2024
Publication Date June 30, 2024
Submission Date September 19, 2023
Acceptance Date March 4, 2024
Published in Issue Year 2024 Volume: 28 Issue: 3

Cite

APA Koç, M., & Zeybek, M. S. (2024). Investigation of the Effect of High-Frequency Induction Sintering on Phase Structure and Microstructure of SiC Reinforced Aluminum Matrix Composites. Sakarya University Journal of Science, 28(3), 550-557. https://doi.org/10.16984/saufenbilder.1363032
AMA Koç M, Zeybek MS. Investigation of the Effect of High-Frequency Induction Sintering on Phase Structure and Microstructure of SiC Reinforced Aluminum Matrix Composites. SAUJS. June 2024;28(3):550-557. doi:10.16984/saufenbilder.1363032
Chicago Koç, Muhterem, and Mehmet Sadrettin Zeybek. “Investigation of the Effect of High-Frequency Induction Sintering on Phase Structure and Microstructure of SiC Reinforced Aluminum Matrix Composites”. Sakarya University Journal of Science 28, no. 3 (June 2024): 550-57. https://doi.org/10.16984/saufenbilder.1363032.
EndNote Koç M, Zeybek MS (June 1, 2024) Investigation of the Effect of High-Frequency Induction Sintering on Phase Structure and Microstructure of SiC Reinforced Aluminum Matrix Composites. Sakarya University Journal of Science 28 3 550–557.
IEEE M. Koç and M. S. Zeybek, “Investigation of the Effect of High-Frequency Induction Sintering on Phase Structure and Microstructure of SiC Reinforced Aluminum Matrix Composites”, SAUJS, vol. 28, no. 3, pp. 550–557, 2024, doi: 10.16984/saufenbilder.1363032.
ISNAD Koç, Muhterem - Zeybek, Mehmet Sadrettin. “Investigation of the Effect of High-Frequency Induction Sintering on Phase Structure and Microstructure of SiC Reinforced Aluminum Matrix Composites”. Sakarya University Journal of Science 28/3 (June 2024), 550-557. https://doi.org/10.16984/saufenbilder.1363032.
JAMA Koç M, Zeybek MS. Investigation of the Effect of High-Frequency Induction Sintering on Phase Structure and Microstructure of SiC Reinforced Aluminum Matrix Composites. SAUJS. 2024;28:550–557.
MLA Koç, Muhterem and Mehmet Sadrettin Zeybek. “Investigation of the Effect of High-Frequency Induction Sintering on Phase Structure and Microstructure of SiC Reinforced Aluminum Matrix Composites”. Sakarya University Journal of Science, vol. 28, no. 3, 2024, pp. 550-7, doi:10.16984/saufenbilder.1363032.
Vancouver Koç M, Zeybek MS. Investigation of the Effect of High-Frequency Induction Sintering on Phase Structure and Microstructure of SiC Reinforced Aluminum Matrix Composites. SAUJS. 2024;28(3):550-7.