Research Article
BibTex RIS Cite

First-principles Calculations of TlCdF3 Compound under Pressure

Year 2024, Volume: 28 Issue: 3, 558 - 566, 30.06.2024
https://doi.org/10.16984/saufenbilder.1368596

Abstract

The present study focused on investigating various properties including structural, elastic, electronic, and optical of TlCdF3 compound under hydrostatic pressure using Density Functional Theory (DFT). The estimated results were consistent with previous investigations. The analysis of the electronic band structures between 0 and 50 GPa revealed that this compound possesses an indirect band gap. The stress-strain method was used to explain elastic properties, and the findings revealed that this compound is ductile, anisotropic and mechanically stable between 0 and 50 GPa. Investigations were done on significant optical features such as refractive index n (𝜔), extinction coefficient k (𝜔), absorption coefficient α (𝜔) and reflectivity R (𝜔) at various pressures between 0 and 50 eV. Our results imply that TlCdF3 compound has the potential for a broad range of technological applications under hydrostatic pressure.

Thanks

The numerical calculations reported in this paper were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

References

  • [1] M. K. Shahzad, S. Hussain, M. U. Farooq, R. A. Laghari, M. H. Bilal, S. A. Khan, M. Tahir, A. Khalil, J. U. Rehman, M. M. Ali, “First-principles calculations to investigate structural, electronic, elastic and optical properties of radium based cubic fluoro-perovskite materials,” Heliyon, vol. 9, pp. E13687, (2023).
  • [2] Shakeel, A. H. Reshak, S. Khan, A. Laref, G. Murtaza, J. Bila, “Pressure induced physical variations in the lead free fluoropervoskites XYF3 (X=K, Rb, Ag; Y=Zn, Sr, Mg): Optical materials,” Optical Materials, vol. 109, pp. 110325, 2020.
  • [3] T. Tianyu, Y. Tang, “First-Principles Calculations to Investigate Direct-Band Novel Cobalt-Based Double Perovskite Materials for Optoelectronic Applications, ” Energy & Fuels, vol. 37, pp. 1266−1274, 2022.
  • [4] J. Saddique, M. Husain, N. Rahman, R. Khan, Zulfiqar, A. Iqbal, M. Sohail, S. A. Khattak, S. N. Khan, A. A. Khan, A.H. Reshak, A. Khan, “Modeling structural, elastic, electronic and optical properties of ternary cubic barium based fluoroperovskites MBaF3 (M = Ga and In) compounds based on DFT,” Materials Science in Semiconductor Processing, vol. 139, pp. 106345, 2022.
  • [5] T. Nishimatsu, N. Terakubo, H. Mizuseki, Y. Kawazoe, D. A. Pawlak, K. Shimamura, T. Fukuda, “Band Structures of Perovskite-Like Fluorides for Vacuum-Ultraviolet-Transparent Lens Materials,” Japanese Journal of Applied Physics, vol. 41, pp. 090301, 2002.
  • [6] Y. Fujimoto, M. Koshimizu, T. Yanagida, G. Okada, K. Saeki, K. Asai, “Thallium magnesium chloride: A high light yield, large effective atomic number, intrinsically activated crystalline scintillator for X-ray and gamma-ray detection,” Japanese Journal of Applied Physics, vol. 55, pp. 090301, 2016.
  • [7] S. Khan, S. U. Zaman, R. Ahmad, N. Mehmood, M. Arif, H. J. Kim, “Ab Initio Investigations of Structural, Elastic, Electronic and Optical Properties of the Fluoroperovskite TlXF3 (X = Ca, Cd, Hg, and Mg) Compounds,” Materials Research Express, vol. 6, no.12, pp. 125923, 2020.
  • [8] A. Cheriet, B. Lagoun, M. Halit, M. Zaabat, C. Abdelhakim, H. Lidjici, “First-principles study of structural, electronic, optical and elastic properties of cadmium based Fluoro-Perovskite MCdF3 (M= Rb, Tl),” Solid State Phenomena, vol. 297, pp. 173-186, 2019.
  • [9] M. Sohail, M. Husain, N. Rahman, K. Althubeiti, M. Algethami, A. A. Khan, A. Iqbal, A. Ullah, A. Khanfg, R. Khan “First-principal investigations of electronic, structural, elastic and optical properties of the fluoroperovskite TlLF3 (L= Ca, Cd) compounds for optoelectronic applications,” RSC Advances, vol. 12, no.12, pp. 7002-7008, 2022.
  • [10] M. Chabin, F. Gilletta, C. Ridou, “Thermal properties of TlCdF3 and RbCaF3 near their phase transitions,” Physica status solidi (a), vol. 48(1), pp. 67-70, 1978.
  • [11] M. Rousseau, J. Y. Gesland, J. Julliard, J. Nouet, J. Zarembowitch, A. Zarembowitch, “Crystallographic, elastic, and Raman scattering investigations of structural phase transitions in RbCdF3 and TlCdF3,” Physical Review B, vol. 12, no.4, pp.1579, 1975.
  • [12] M. Fischer, “Third and fourth order elastic constants of fluoperovskites CsCdF3, TlCdF3, RbCdF3, RbCaF3,” Journal of Physics and Chemistry of Solids, vol. 43, no.8, pp. 673-682, 1982.
  • [13] J. Berger, G. Hauret, M. Rousseau, “Brillouin scattering investigation of the structural phase transition of TlCdF3 and RbCaF3,” Solid State Communications, vol. 25, no.8, pp. 569-571, 1978.
  • [14] S. U. Zaman, N. Rahman, M. Arif, M. Saqib, M. Husain, E. Bonyah, Z. Shah, S. Zulfiqar, A. Khan, “Ab initio investigation of the physical properties of Tl based chloroperovskites TlXCl3 (X= Ca and Cd),” AIP Advances, vol. 11(1), pp. 015204, 2021.
  • [15] J. Hafner, “Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond,” Journal of Computational Chemistry, vol. 29, pp. 2044-2078, 2008.
  • [16] G. Kresse, J. Hafner, “Ab initio molecular-dynamics simulation of the liquid-metal–amorphous semiconductor transition in germanium,” Physical Review B, 49: pp.14251, 1994.
  • [17] G. Kresse, J. Hafner, “Ab initio molecular dynamics for liquid metals,” Physical Review B, vol.47, pp. 558-561, 1993.
  • [18] G. Kresse, J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science, vol. 6, pp. 15-50, 1996.
  • [19] J. P. Perdew, K. Burke, M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, vol. 77, pp. 3865-3868, 1996.
  • [20] H. J. Monkhorst, J. D. Pack, “Special points for Brillouin-zone integrations,” Physical Review B, vol. 13, no. 12, pp. 5188-5192, 1976.
  • [21] Y. Le Page, P. Saxe, “Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress,” Physical Review B, vol. 65 10, pp. 104104, 2002.
  • [22] F. Mouhat, F. X. Coudert, “Necessary and sufficient elastic stability conditions in various crystal systems,” Physical Review B, vol. 90, pp 224104, 2014.
  • [23] A. Reuss, “Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle”, Zeitschrift für Angewandte Mathematik und Mechanik, vol. 9, pp. 49. 1929.
  • [24] W. Voigt, “Lehrbuch der Kristallpysik”, vol. 34, Teubner, Leipzig, Germany, 1928.
  • [25] R. Hill, “The Elastic Behaviour of a Crystalline Aggregate,” Proceedings of the Physical Society, Section A, vol. 65, pp. 349, 1952.
  • [26] V. V. Bannikov, I. R., Shein, A. L. Ivanovskii, “Elastic properties of antiperovskite-type Ni-rich nitrides MNNi3 (M= Zn, Cd, Mg, Al, Ga, In, Sn, Sb, Pd, Cu, Ag and Pt) as predicted from first-principles calculations,” Physica B: Condensed Matter, vol. 405 (22), pp.4615-4619, 2010.
  • [27] T. Seddik, R. Khenata, O. Merabiha, A. Bouhemadou, S. Bin-Omran, D. Rached, “Elastic, electronic and thermodynamic properties of fluoro-perovskite KZnF3 via first-principles calculations,” Applied Physics A, vol. 106, pp. 645-653, 2012.
  • [28] B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, J. Harris, P. C. Schmidt, “Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases,” Intermetallics, vol. 11(1), pp. 23-32, 2003.
  • [29] S. F. Pugh, “XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 45 (367), pp. 823-843, 1954.
  • [30] I. N. Frantsevich, F. F. Voronov, S. A. Bokuta, “Elastic Constants and Elastic Moduli of Metals and Insulators Handbook”, edited by I. N. Frantsevich Naukuva Dumka, Kiev, 1982.
  • [31] D. G. Pettifor, “Theoretical predictions of structure and related properties of intermetallics,” Materials science and technology, vol. 8, pp. 345-349, 1992.
  • [32] M. Fox, “Optical Properties of Solids”, Oxford University Press, New York, 2001.
  • [33] W. Belkilali, F. Belkharroubi, M. Ameri, N. Ramdani, F. Boudahri, F. Khelfaoui, A. Amara, S. Azzi, L. Drici, I. Ameri, Y. Douri, “Theoretical investigations of structural, mechanical, electronic and optical properties of NaScSi alloy,” Emergent Materials, vol. 4, pp. 1465-1477, 2021.
  • [34] M. A. Iqbal, N. Erum, “Opto-Electronic Investigation of Rubidium Based Fluoro-Perovskite for Low Birefringent Lens Materials,” Scientific Inquiry and Review, vol. 1(1), pp. 37-48, 2017.
Year 2024, Volume: 28 Issue: 3, 558 - 566, 30.06.2024
https://doi.org/10.16984/saufenbilder.1368596

Abstract

References

  • [1] M. K. Shahzad, S. Hussain, M. U. Farooq, R. A. Laghari, M. H. Bilal, S. A. Khan, M. Tahir, A. Khalil, J. U. Rehman, M. M. Ali, “First-principles calculations to investigate structural, electronic, elastic and optical properties of radium based cubic fluoro-perovskite materials,” Heliyon, vol. 9, pp. E13687, (2023).
  • [2] Shakeel, A. H. Reshak, S. Khan, A. Laref, G. Murtaza, J. Bila, “Pressure induced physical variations in the lead free fluoropervoskites XYF3 (X=K, Rb, Ag; Y=Zn, Sr, Mg): Optical materials,” Optical Materials, vol. 109, pp. 110325, 2020.
  • [3] T. Tianyu, Y. Tang, “First-Principles Calculations to Investigate Direct-Band Novel Cobalt-Based Double Perovskite Materials for Optoelectronic Applications, ” Energy & Fuels, vol. 37, pp. 1266−1274, 2022.
  • [4] J. Saddique, M. Husain, N. Rahman, R. Khan, Zulfiqar, A. Iqbal, M. Sohail, S. A. Khattak, S. N. Khan, A. A. Khan, A.H. Reshak, A. Khan, “Modeling structural, elastic, electronic and optical properties of ternary cubic barium based fluoroperovskites MBaF3 (M = Ga and In) compounds based on DFT,” Materials Science in Semiconductor Processing, vol. 139, pp. 106345, 2022.
  • [5] T. Nishimatsu, N. Terakubo, H. Mizuseki, Y. Kawazoe, D. A. Pawlak, K. Shimamura, T. Fukuda, “Band Structures of Perovskite-Like Fluorides for Vacuum-Ultraviolet-Transparent Lens Materials,” Japanese Journal of Applied Physics, vol. 41, pp. 090301, 2002.
  • [6] Y. Fujimoto, M. Koshimizu, T. Yanagida, G. Okada, K. Saeki, K. Asai, “Thallium magnesium chloride: A high light yield, large effective atomic number, intrinsically activated crystalline scintillator for X-ray and gamma-ray detection,” Japanese Journal of Applied Physics, vol. 55, pp. 090301, 2016.
  • [7] S. Khan, S. U. Zaman, R. Ahmad, N. Mehmood, M. Arif, H. J. Kim, “Ab Initio Investigations of Structural, Elastic, Electronic and Optical Properties of the Fluoroperovskite TlXF3 (X = Ca, Cd, Hg, and Mg) Compounds,” Materials Research Express, vol. 6, no.12, pp. 125923, 2020.
  • [8] A. Cheriet, B. Lagoun, M. Halit, M. Zaabat, C. Abdelhakim, H. Lidjici, “First-principles study of structural, electronic, optical and elastic properties of cadmium based Fluoro-Perovskite MCdF3 (M= Rb, Tl),” Solid State Phenomena, vol. 297, pp. 173-186, 2019.
  • [9] M. Sohail, M. Husain, N. Rahman, K. Althubeiti, M. Algethami, A. A. Khan, A. Iqbal, A. Ullah, A. Khanfg, R. Khan “First-principal investigations of electronic, structural, elastic and optical properties of the fluoroperovskite TlLF3 (L= Ca, Cd) compounds for optoelectronic applications,” RSC Advances, vol. 12, no.12, pp. 7002-7008, 2022.
  • [10] M. Chabin, F. Gilletta, C. Ridou, “Thermal properties of TlCdF3 and RbCaF3 near their phase transitions,” Physica status solidi (a), vol. 48(1), pp. 67-70, 1978.
  • [11] M. Rousseau, J. Y. Gesland, J. Julliard, J. Nouet, J. Zarembowitch, A. Zarembowitch, “Crystallographic, elastic, and Raman scattering investigations of structural phase transitions in RbCdF3 and TlCdF3,” Physical Review B, vol. 12, no.4, pp.1579, 1975.
  • [12] M. Fischer, “Third and fourth order elastic constants of fluoperovskites CsCdF3, TlCdF3, RbCdF3, RbCaF3,” Journal of Physics and Chemistry of Solids, vol. 43, no.8, pp. 673-682, 1982.
  • [13] J. Berger, G. Hauret, M. Rousseau, “Brillouin scattering investigation of the structural phase transition of TlCdF3 and RbCaF3,” Solid State Communications, vol. 25, no.8, pp. 569-571, 1978.
  • [14] S. U. Zaman, N. Rahman, M. Arif, M. Saqib, M. Husain, E. Bonyah, Z. Shah, S. Zulfiqar, A. Khan, “Ab initio investigation of the physical properties of Tl based chloroperovskites TlXCl3 (X= Ca and Cd),” AIP Advances, vol. 11(1), pp. 015204, 2021.
  • [15] J. Hafner, “Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond,” Journal of Computational Chemistry, vol. 29, pp. 2044-2078, 2008.
  • [16] G. Kresse, J. Hafner, “Ab initio molecular-dynamics simulation of the liquid-metal–amorphous semiconductor transition in germanium,” Physical Review B, 49: pp.14251, 1994.
  • [17] G. Kresse, J. Hafner, “Ab initio molecular dynamics for liquid metals,” Physical Review B, vol.47, pp. 558-561, 1993.
  • [18] G. Kresse, J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science, vol. 6, pp. 15-50, 1996.
  • [19] J. P. Perdew, K. Burke, M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, vol. 77, pp. 3865-3868, 1996.
  • [20] H. J. Monkhorst, J. D. Pack, “Special points for Brillouin-zone integrations,” Physical Review B, vol. 13, no. 12, pp. 5188-5192, 1976.
  • [21] Y. Le Page, P. Saxe, “Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress,” Physical Review B, vol. 65 10, pp. 104104, 2002.
  • [22] F. Mouhat, F. X. Coudert, “Necessary and sufficient elastic stability conditions in various crystal systems,” Physical Review B, vol. 90, pp 224104, 2014.
  • [23] A. Reuss, “Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle”, Zeitschrift für Angewandte Mathematik und Mechanik, vol. 9, pp. 49. 1929.
  • [24] W. Voigt, “Lehrbuch der Kristallpysik”, vol. 34, Teubner, Leipzig, Germany, 1928.
  • [25] R. Hill, “The Elastic Behaviour of a Crystalline Aggregate,” Proceedings of the Physical Society, Section A, vol. 65, pp. 349, 1952.
  • [26] V. V. Bannikov, I. R., Shein, A. L. Ivanovskii, “Elastic properties of antiperovskite-type Ni-rich nitrides MNNi3 (M= Zn, Cd, Mg, Al, Ga, In, Sn, Sb, Pd, Cu, Ag and Pt) as predicted from first-principles calculations,” Physica B: Condensed Matter, vol. 405 (22), pp.4615-4619, 2010.
  • [27] T. Seddik, R. Khenata, O. Merabiha, A. Bouhemadou, S. Bin-Omran, D. Rached, “Elastic, electronic and thermodynamic properties of fluoro-perovskite KZnF3 via first-principles calculations,” Applied Physics A, vol. 106, pp. 645-653, 2012.
  • [28] B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, J. Harris, P. C. Schmidt, “Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases,” Intermetallics, vol. 11(1), pp. 23-32, 2003.
  • [29] S. F. Pugh, “XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 45 (367), pp. 823-843, 1954.
  • [30] I. N. Frantsevich, F. F. Voronov, S. A. Bokuta, “Elastic Constants and Elastic Moduli of Metals and Insulators Handbook”, edited by I. N. Frantsevich Naukuva Dumka, Kiev, 1982.
  • [31] D. G. Pettifor, “Theoretical predictions of structure and related properties of intermetallics,” Materials science and technology, vol. 8, pp. 345-349, 1992.
  • [32] M. Fox, “Optical Properties of Solids”, Oxford University Press, New York, 2001.
  • [33] W. Belkilali, F. Belkharroubi, M. Ameri, N. Ramdani, F. Boudahri, F. Khelfaoui, A. Amara, S. Azzi, L. Drici, I. Ameri, Y. Douri, “Theoretical investigations of structural, mechanical, electronic and optical properties of NaScSi alloy,” Emergent Materials, vol. 4, pp. 1465-1477, 2021.
  • [34] M. A. Iqbal, N. Erum, “Opto-Electronic Investigation of Rubidium Based Fluoro-Perovskite for Low Birefringent Lens Materials,” Scientific Inquiry and Review, vol. 1(1), pp. 37-48, 2017.
There are 34 citations in total.

Details

Primary Language English
Subjects Structural Properties of Condensed Matter
Journal Section Research Articles
Authors

Belgin Koçak 0000-0002-4395-4467

Yasemin Çiftci 0000-0003-1796-0270

Early Pub Date June 6, 2024
Publication Date June 30, 2024
Submission Date September 29, 2023
Acceptance Date March 30, 2024
Published in Issue Year 2024 Volume: 28 Issue: 3

Cite

APA Koçak, B., & Çiftci, Y. (2024). First-principles Calculations of TlCdF3 Compound under Pressure. Sakarya University Journal of Science, 28(3), 558-566. https://doi.org/10.16984/saufenbilder.1368596
AMA Koçak B, Çiftci Y. First-principles Calculations of TlCdF3 Compound under Pressure. SAUJS. June 2024;28(3):558-566. doi:10.16984/saufenbilder.1368596
Chicago Koçak, Belgin, and Yasemin Çiftci. “First-Principles Calculations of TlCdF3 Compound under Pressure”. Sakarya University Journal of Science 28, no. 3 (June 2024): 558-66. https://doi.org/10.16984/saufenbilder.1368596.
EndNote Koçak B, Çiftci Y (June 1, 2024) First-principles Calculations of TlCdF3 Compound under Pressure. Sakarya University Journal of Science 28 3 558–566.
IEEE B. Koçak and Y. Çiftci, “First-principles Calculations of TlCdF3 Compound under Pressure”, SAUJS, vol. 28, no. 3, pp. 558–566, 2024, doi: 10.16984/saufenbilder.1368596.
ISNAD Koçak, Belgin - Çiftci, Yasemin. “First-Principles Calculations of TlCdF3 Compound under Pressure”. Sakarya University Journal of Science 28/3 (June 2024), 558-566. https://doi.org/10.16984/saufenbilder.1368596.
JAMA Koçak B, Çiftci Y. First-principles Calculations of TlCdF3 Compound under Pressure. SAUJS. 2024;28:558–566.
MLA Koçak, Belgin and Yasemin Çiftci. “First-Principles Calculations of TlCdF3 Compound under Pressure”. Sakarya University Journal of Science, vol. 28, no. 3, 2024, pp. 558-66, doi:10.16984/saufenbilder.1368596.
Vancouver Koçak B, Çiftci Y. First-principles Calculations of TlCdF3 Compound under Pressure. SAUJS. 2024;28(3):558-66.