Research Article
BibTex RIS Cite

Levulinic Acid Production from Artichoke Leaves (Cynara Scolymus L.) by Catalytic Hydrothermal Reaction

Year 2024, Volume: 28 Issue: 6, 1158 - 1164
https://doi.org/10.16984/saufenbilder.1435700

Abstract

In addition to examining the highest yield production of Levulinic acid (LA) from artichoke leaves by the subcritical catalytic hydrothermal decomposition, the studies were carried out on also increasing the production yields of 5-Hydroxymethylfurfural (HMF), Acetic and Formic acid from this biomass. In order to obtain the most suitable reaction conditions, the effect of different reaction conditions, including different temperature, reaction time, pH and catalyst types, on the decomposition of artichoke leaves and product yields were investigated. The subcritical thermal decomposition studies of artichoke leaves were carried out in an autoclave system at temperatures (120°C, 140°C, 160°C, and 180°C) for reaction times of 10, 20, 30, 40, and 50 min in the presence of H2SO4, HNO3, and HCL catalysts with different pH values; these reactions were realized also without adding a catalyst. As a result of the detailed research, it was seen that the most suitable experimental conditions for the production of LA with the highest yield from artichoke leaves could be achieved by adding sulfuric acid with a pH of 0.5 at a reaction temperature of 180°C and a reaction time of 50 min. The investigations were continued till achieving the highest product yields. After carrying out the experiments stated above, the optimal yields of the products produced from the artichoke biomass by the reactions were found as 209.39 g/kg biomass for LA, 117.40 g/kg biomass for formic acid, 72.27 g/kg biomass for acetic acid, and 39.04 g/kg biomass for 5-HMF.

Supporting Institution

Ege Üniversitesi , Mühendislik Fakültesi

Project Number

BAP Proje No: 16 MUH 040

References

  • A. Morone, M. Apte, R. A. Pandey, “Levulinic acid production from renewable waste resources: Bottlenecks, potential remedies, advancements and applications,” Renewable and Sustainable Energy Reviews, vol. 51/C, pp. 548-565, 2015.
  • U. Rackemann, W. Doherty, “The conversion of lignocellulosics to levulinic acid,” Biofuels Bioproducts and Biorefining, vol. 5, no. 2, pp. 198–214, 2011.
  • S. G. Wettstein, D. M. Alonso, Y. Chong, J. Dumesic, “Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems,” Energy and Environmental Science, vol. 5, pp. 8199, 2012.
  • X. Li, R. Xu, J. Yang, S. Nie, D. Liu, Y. Liu, S. Chuanling, “Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation,” Industrial Crops and Products, vol. 130, pp. 184-187, 2019.
  • I. N. Pulidindi, T. H. Kim, “Conversion of Levulinic Acid from various herbaceous biomass species using hydrochloric,” Energies, vol. 11, no.3i, pp. 621, 2018.
  • R. Weingarten, Wm. C. Conner, Jr., G. W. Huber, “Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst,” Energy & Environmental Science, vol. 5, pp. 7559-7574, 2012.
  • G.-T. Jeong, D.-H. Park, “Production of Sugars and Levulinic Acid from Marine Biomass Gelidium amansii,” Applied Biochemistry and Biotechnology, vol. 161, pp. 41–52, 2010.
  • A. M. Raspolli Galletti, C. Antonetti, V. D. Loise, D. Licursi, N. N. o Di Nasso, “Levulinic acid production from waste biomass,” BioResources, vol. 7, no. 2, pp. 1824-1835, 2012.
  • FAO, Food and Agriculture Organization of the United Nations. 2018. Available online: http://faostat.fao.org (accessed on 16 October 2020).
  • M. Francavilla, P. Marasco, F. Contillo, M. Monteleone, “Artichoke Biorefinery: From Food to Advanced Technological Applications,” Foods, vol. 19, no. 1, pp. 112-128, 2021.
  • G. R. Pesce, J. Alves-Ferreira, A. Hsiao, I. Torrado, G. Martinez, G. Mauromicale, M. C. Fernandes, ”Bioethanol Production from Globe Artichoke Residues: from the Field to the Fermenter,” BioEnergy Research, pp. 1-12, 2022- Springer.
  • G. T. Jeong, “Catalytic conversion of Helianthus tuberosus L. to sugars, 5-hydroxymethylfurfural and levulinic acid using hydrothermal reaction,” Biomass and Bioenergy, vol. 74, pp. 113-121, 2015.
  • X.-F. Wu, J.-J. Zhang, M.-F. Li, J. Bian, F. Peng, “Catalytic hydrothermal liquefaction of eucalyptus to prepare bio-oils and product properties,”Catalytic hydrothermal liquefaction of eucalyptus to prepare bio-oils and product properties,” Energy Conversion and Management, Vol. 199, pp. 111955, 2019.
  • X.-F. Wu, Q. Zhou, M.-F. Li, S.-X. Li, J. Bian, F. Peng, “Conversion of poplar into bio-oil via subcritical hydrothermal liquefaction: Structure and antioxidant capacity,” Bioresource Technology, vol. 270, pp. 216-222, 2018.
  • A. Yüksel Özşen, “Conversion of Biomass to Organic Acids by Liquefaction Reactions Under Subcritical Conditions,” Frontiers / Bioresourse Technology, vol. 8, pp. 49-60, 2020.
  • B. De Caprariis, P. De Filippis, A. Petrullo, M. Scarsella, “Hydrothermal liquefaction of biomass: Influence of temperature and biomass composition on the bio-oil production,” Fuel, vol. 208, pp. 618-625, 2017.
  • H. K. Goering, P. J. Van Soest, Forage fiber analyses, Agriculture Handbook, US Government Printing Office, Washington, D.C., 1970, pp. 829-835.
  • D. Selvi Gökkaya, G. Akgül, M. Sağlam, M. Yüksel, L. Ballice, “Supercritical conversion of wastes from wine industry: Effects of concentration, temperature and group 1A carbonates,” The Journal of Supercritical Fluids, vol. 176, pp.105359, 2021.
  • M. D. N. Meinita, A. Amron, D. Harwanta, G. – T. Jeong, “The production of levulinic acid and formic acid from red macroalga Kappaphycus alvarezii using methanesulfonic acid,” Bioresource Technology Reports, vol. 17, pp.10954 (1-10), 2022.
  • K. Lappalaine, N. Vogeler, J. Karkkainen, Y. Dong, M. Niemela, A, Rusanen, A. L. Ruotsalainen, P. Wali, A. Markkola, U. Lassi, “Microwave-assisted conversion of novel biomass materials into Levulinic Acid,” Biomass Conversion Biorefinery, vol. 8, pp. 965–970, 2018.
  • F. Perveen, M. Farooq, A. Ramli, A. Neem, I. Wali khan, T. Saeed, “Levulinic Acid Production from Waste Corncob Biomass Using an Environmentally Benign WO3-Grafted ZnCo2O4@CeO2 Bifunctional Heterogeneous Catalyst”, ACS Omega, vol. 8, pp. 333-343, 2023.
  • S. S. Joshi, A. D. Zodge, K. V. Pandare, B. D. Kulkarni, “Efficient Conversion of Cellulose to Levulinic Acid by Hydrothermal Treatment Using Zirconium Dioxide as a Recyclable Solid Acid Catalyst”, Industrial & Engineering Chemistry Research, vol. 53, no. 49, pp. 18796-18805, 2014.
  • M. Salgado, F. J. Barba, G. Crarotto, “Conversion of artichoke leftovers to levulinic acid: A bio-refinery approach“, Journal of Environmental Chemical-Engineering, vol. 11, no. 6, pp. 111390, 2023.
Year 2024, Volume: 28 Issue: 6, 1158 - 1164
https://doi.org/10.16984/saufenbilder.1435700

Abstract

Project Number

BAP Proje No: 16 MUH 040

References

  • A. Morone, M. Apte, R. A. Pandey, “Levulinic acid production from renewable waste resources: Bottlenecks, potential remedies, advancements and applications,” Renewable and Sustainable Energy Reviews, vol. 51/C, pp. 548-565, 2015.
  • U. Rackemann, W. Doherty, “The conversion of lignocellulosics to levulinic acid,” Biofuels Bioproducts and Biorefining, vol. 5, no. 2, pp. 198–214, 2011.
  • S. G. Wettstein, D. M. Alonso, Y. Chong, J. Dumesic, “Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems,” Energy and Environmental Science, vol. 5, pp. 8199, 2012.
  • X. Li, R. Xu, J. Yang, S. Nie, D. Liu, Y. Liu, S. Chuanling, “Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation,” Industrial Crops and Products, vol. 130, pp. 184-187, 2019.
  • I. N. Pulidindi, T. H. Kim, “Conversion of Levulinic Acid from various herbaceous biomass species using hydrochloric,” Energies, vol. 11, no.3i, pp. 621, 2018.
  • R. Weingarten, Wm. C. Conner, Jr., G. W. Huber, “Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst,” Energy & Environmental Science, vol. 5, pp. 7559-7574, 2012.
  • G.-T. Jeong, D.-H. Park, “Production of Sugars and Levulinic Acid from Marine Biomass Gelidium amansii,” Applied Biochemistry and Biotechnology, vol. 161, pp. 41–52, 2010.
  • A. M. Raspolli Galletti, C. Antonetti, V. D. Loise, D. Licursi, N. N. o Di Nasso, “Levulinic acid production from waste biomass,” BioResources, vol. 7, no. 2, pp. 1824-1835, 2012.
  • FAO, Food and Agriculture Organization of the United Nations. 2018. Available online: http://faostat.fao.org (accessed on 16 October 2020).
  • M. Francavilla, P. Marasco, F. Contillo, M. Monteleone, “Artichoke Biorefinery: From Food to Advanced Technological Applications,” Foods, vol. 19, no. 1, pp. 112-128, 2021.
  • G. R. Pesce, J. Alves-Ferreira, A. Hsiao, I. Torrado, G. Martinez, G. Mauromicale, M. C. Fernandes, ”Bioethanol Production from Globe Artichoke Residues: from the Field to the Fermenter,” BioEnergy Research, pp. 1-12, 2022- Springer.
  • G. T. Jeong, “Catalytic conversion of Helianthus tuberosus L. to sugars, 5-hydroxymethylfurfural and levulinic acid using hydrothermal reaction,” Biomass and Bioenergy, vol. 74, pp. 113-121, 2015.
  • X.-F. Wu, J.-J. Zhang, M.-F. Li, J. Bian, F. Peng, “Catalytic hydrothermal liquefaction of eucalyptus to prepare bio-oils and product properties,”Catalytic hydrothermal liquefaction of eucalyptus to prepare bio-oils and product properties,” Energy Conversion and Management, Vol. 199, pp. 111955, 2019.
  • X.-F. Wu, Q. Zhou, M.-F. Li, S.-X. Li, J. Bian, F. Peng, “Conversion of poplar into bio-oil via subcritical hydrothermal liquefaction: Structure and antioxidant capacity,” Bioresource Technology, vol. 270, pp. 216-222, 2018.
  • A. Yüksel Özşen, “Conversion of Biomass to Organic Acids by Liquefaction Reactions Under Subcritical Conditions,” Frontiers / Bioresourse Technology, vol. 8, pp. 49-60, 2020.
  • B. De Caprariis, P. De Filippis, A. Petrullo, M. Scarsella, “Hydrothermal liquefaction of biomass: Influence of temperature and biomass composition on the bio-oil production,” Fuel, vol. 208, pp. 618-625, 2017.
  • H. K. Goering, P. J. Van Soest, Forage fiber analyses, Agriculture Handbook, US Government Printing Office, Washington, D.C., 1970, pp. 829-835.
  • D. Selvi Gökkaya, G. Akgül, M. Sağlam, M. Yüksel, L. Ballice, “Supercritical conversion of wastes from wine industry: Effects of concentration, temperature and group 1A carbonates,” The Journal of Supercritical Fluids, vol. 176, pp.105359, 2021.
  • M. D. N. Meinita, A. Amron, D. Harwanta, G. – T. Jeong, “The production of levulinic acid and formic acid from red macroalga Kappaphycus alvarezii using methanesulfonic acid,” Bioresource Technology Reports, vol. 17, pp.10954 (1-10), 2022.
  • K. Lappalaine, N. Vogeler, J. Karkkainen, Y. Dong, M. Niemela, A, Rusanen, A. L. Ruotsalainen, P. Wali, A. Markkola, U. Lassi, “Microwave-assisted conversion of novel biomass materials into Levulinic Acid,” Biomass Conversion Biorefinery, vol. 8, pp. 965–970, 2018.
  • F. Perveen, M. Farooq, A. Ramli, A. Neem, I. Wali khan, T. Saeed, “Levulinic Acid Production from Waste Corncob Biomass Using an Environmentally Benign WO3-Grafted ZnCo2O4@CeO2 Bifunctional Heterogeneous Catalyst”, ACS Omega, vol. 8, pp. 333-343, 2023.
  • S. S. Joshi, A. D. Zodge, K. V. Pandare, B. D. Kulkarni, “Efficient Conversion of Cellulose to Levulinic Acid by Hydrothermal Treatment Using Zirconium Dioxide as a Recyclable Solid Acid Catalyst”, Industrial & Engineering Chemistry Research, vol. 53, no. 49, pp. 18796-18805, 2014.
  • M. Salgado, F. J. Barba, G. Crarotto, “Conversion of artichoke leftovers to levulinic acid: A bio-refinery approach“, Journal of Environmental Chemical-Engineering, vol. 11, no. 6, pp. 111390, 2023.
There are 23 citations in total.

Details

Primary Language English
Subjects Waste Management, Reduction, Reuse and Recycling
Journal Section Research Articles
Authors

Dilek Selvi Gökkaya 0000-0002-3501-562X

Mehmet Sağlam 0000-0003-1784-4472

Mithat Yüksel 0000-0002-6287-3566

Levent Ballice 0000-0002-3137-1352

Project Number BAP Proje No: 16 MUH 040
Early Pub Date November 13, 2024
Publication Date
Submission Date February 12, 2024
Acceptance Date October 28, 2024
Published in Issue Year 2024 Volume: 28 Issue: 6

Cite

APA Selvi Gökkaya, D., Sağlam, M., Yüksel, M., Ballice, L. (2024). Levulinic Acid Production from Artichoke Leaves (Cynara Scolymus L.) by Catalytic Hydrothermal Reaction. Sakarya University Journal of Science, 28(6), 1158-1164. https://doi.org/10.16984/saufenbilder.1435700
AMA Selvi Gökkaya D, Sağlam M, Yüksel M, Ballice L. Levulinic Acid Production from Artichoke Leaves (Cynara Scolymus L.) by Catalytic Hydrothermal Reaction. SAUJS. November 2024;28(6):1158-1164. doi:10.16984/saufenbilder.1435700
Chicago Selvi Gökkaya, Dilek, Mehmet Sağlam, Mithat Yüksel, and Levent Ballice. “Levulinic Acid Production from Artichoke Leaves (Cynara Scolymus L.) by Catalytic Hydrothermal Reaction”. Sakarya University Journal of Science 28, no. 6 (November 2024): 1158-64. https://doi.org/10.16984/saufenbilder.1435700.
EndNote Selvi Gökkaya D, Sağlam M, Yüksel M, Ballice L (November 1, 2024) Levulinic Acid Production from Artichoke Leaves (Cynara Scolymus L.) by Catalytic Hydrothermal Reaction. Sakarya University Journal of Science 28 6 1158–1164.
IEEE D. Selvi Gökkaya, M. Sağlam, M. Yüksel, and L. Ballice, “Levulinic Acid Production from Artichoke Leaves (Cynara Scolymus L.) by Catalytic Hydrothermal Reaction”, SAUJS, vol. 28, no. 6, pp. 1158–1164, 2024, doi: 10.16984/saufenbilder.1435700.
ISNAD Selvi Gökkaya, Dilek et al. “Levulinic Acid Production from Artichoke Leaves (Cynara Scolymus L.) by Catalytic Hydrothermal Reaction”. Sakarya University Journal of Science 28/6 (November 2024), 1158-1164. https://doi.org/10.16984/saufenbilder.1435700.
JAMA Selvi Gökkaya D, Sağlam M, Yüksel M, Ballice L. Levulinic Acid Production from Artichoke Leaves (Cynara Scolymus L.) by Catalytic Hydrothermal Reaction. SAUJS. 2024;28:1158–1164.
MLA Selvi Gökkaya, Dilek et al. “Levulinic Acid Production from Artichoke Leaves (Cynara Scolymus L.) by Catalytic Hydrothermal Reaction”. Sakarya University Journal of Science, vol. 28, no. 6, 2024, pp. 1158-64, doi:10.16984/saufenbilder.1435700.
Vancouver Selvi Gökkaya D, Sağlam M, Yüksel M, Ballice L. Levulinic Acid Production from Artichoke Leaves (Cynara Scolymus L.) by Catalytic Hydrothermal Reaction. SAUJS. 2024;28(6):1158-64.