Research Article
BibTex RIS Cite

Air-Exposure-Driven Color and Optical Variations in Hydroxyapatite Extracted from Fish Scales

Year 2025, Volume: 29 Issue: 1, 125 - 139, 28.02.2025
https://doi.org/10.16984/saufenbilder.1589238

Abstract

The disposal of fish scales as waste presents an environmental challenge and an untapped opportunity for resource recovery. In this study, hydroxyapatite (HAp) was extracted from European seabass (Dicentrarchus labrax) scales to explore how air exposure during calcination affects its optical and surface properties. HAp powders were prepared under two distinct calcination conditions: fully exposed to air (producing white powder) and partially shielded from air (resulting in gray powder). Rietveld refinement of X-ray powder diffraction (XRPD) data confirms that both powders crystallize in the hexagonal HAp structure, with a minor Mg-whitlockite impurity. Despite these differences in air exposure, the bulk structure of the HAp remains unchanged. The color variations are linked to surface oxidation, as subsurface layers in the partially shielded scales retains a grayish tone while the exposed surfaces turn completely white. Scanning electron microscopy reveals subtle differences in particle morphology: the white powder had a smoother surface compared to the slightly rougher gray powder. Fourier transform infrared spectra confirms the presence of characteristic phosphate and hydroxyl groups in both powders, indicating that the core chemical structure of HAp is intact in both cases. The Ca/P ratios—1.504(7) for the white powder and 1.505(7) for the gray powder obtained from the Rietveld analysis—further supports the stoichiometric integrity of the material. UV-Vis spectroscopy reveals direct bandgap values of 3.99 eV for the white powder and 3.87 eV for the gray powder. These bandgap values, which are lower than those typically reported for defect-free HAp (5–6 eV), suggest that the optical differences between the powders are driven by surface effects, such as oxygen vacancies or trace impurities. This study highlights how calcination conditions, particularly air exposure, influence surface properties and optical behavior, paving the way for potential applications of fish-scale-derived HAp in electronic and optical materials.

References

  • P. W. Brown, B. Constantz, Hydroxyapatite and related materials, USA:CRC press Boca Raton, 1994.
  • H. Cölfen, “A crystal-clear view,” Nature Materials, vol. 9, no. 12, pp. 960–961, 2010.
  • S. F. Jackson, J. T. Randall, “The fine structure of bone,” Nature, vol. 178, no. 4537, p. 798, 1956.
  • R. Murugan, S. Ramakrishna, “Development of nanocomposites for bone grafting,” Composites Science and Technology, vol. 65, no. 15, pp. 2385–2406, 2005.
  • N. Eliaz, N. Metoki, “Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications.,” Materials (Basel, Switzerland), vol. 10, no. 4, 2017.
  • A. S. Posner, A. Perloff, A. F. Diorio, “Refinement of the hydroxyapatite structure,” Acta Crystallogr., vol. 11, no. 4, pp. 308–309, 1958.
  • J. C. Elliott, P. E. Mackie, R. A. Young, “Monoclinic hydroxyapatite,” Science, vol. 180, no. 4090, pp. 1055–1057, 1973.
  • G. Ma, X. Y. Liu, “Hydroxyapatite: hexagonal or monoclinic?,” Crystal Growth & Design, vol. 9, no. 7, pp. 2991–2994, Jul. 2009.
  • M. Sadat-Shojai, M.-T. Khorasani, E. Dinpanah-Khoshdargi, A. Jamshidi, “Synthesis methods for nanosized hydroxyapatite with diverse structures,” Acta Biomaterials, vol. 9, no. 8, pp. 7591–7621, 2013.
  • P. Arokiasamy, M. M. A. B Abdullah, S. Z. Abd Rahim, S. Luhar, A. V. Sandu, N. H. Jamil, M. Nabiałek, “Synthesis methods of hydroxyapatite from natural sources: A review,” Ceramics International, vol. 48, no. 11, pp. 14959–14979, 2022.
  • N. A. S. Mohd Pu’ad, P. Koshy, H. Z. Abdullah, M. I. Idris, T. C. Lee, “Syntheses of hydroxyapatite from natural sources,” Heliyon, vol. 5, no. 5, p. e01588, 2019.
  • V.-R. Maria, D. A. Navarrete, D. Arcos, Biomimetic Nanoceramics in Clinical Use: From Materials to Applications. Cambridge: Royal Society of Chemistry, 2008.
  • T. Eknapakul, S. Kuimalee, W. Sailuam, S. Daengsakul, N. Tanapongpisit, P. Laohana, W. Saenrang, A. Bootchanont, A. Khamkongkaeo, R. Yimnirun, “Impacts of pre-treatment methods on the morphology, crystal structure, and defects formation of hydroxyapatite extracted from Nile tilapia scales,” RSC Advances, vol. 14, no. 7, pp. 4614–4622, 2024.
  • H. E. Okur, “Rietveld refinement-based structural analysis of biogenic hydroxyapatite and its PVA composite for dye removal,” Mater. Today Commun., vol. 43, p. 111723, 2025
  • G. Rosenman, D. Aronov, L. Oster, “Photoluminescence and surface photovoltage spectroscopy studies of hydroxyapatite nano-Bio-ceramics,” Journal of Luminescence, vol. 122–123, pp. 936–938, 2007.
  • K. Matsunaga, A. Kuwabara, “First-principles study of vacancy formation in hydroxyapatite,” Physical Review B, vol. 75, no. 1, p. 14102, 2007.
  • L. Calderin, M. J. Stott, A. Rubio, “Electronic and crystallographic structure of apatites,” Physical Review. B, vol. 67, no. 13, p. 134106, 2003.
  • P. Rulis, L. Ouyang, W. Y. Ching, “Electronic structure and bonding in calcium apatite crystals: Hydroxyapatite, fluorapatite, chlorapatite, and bromapatite,” Physical Review B, vol. 70, no. 15, p. 155104, 2004.
  • L. A. Avakyan, E. V Paramonova, J. Coutinho, S. Oberg, V. S. Bystrov, L. A. Bugaev, “Optoelectronics and defect levels in hydroxyapatite by first-principles,” Journal of Chemical Physics, vol. 148, no. 15, 2018.
  • K. Kaviyarasu, A. Mariappan, K. Neyvasagam, A. Ayeshamariam, P. Pandi, R. R. Palanichamy, C. Gopinathan, G. T. Mola, M. Maaza “Photocatalytic performance and antimicrobial activities of HAp-TiO2 nanocomposite thin films by sol-gel method,” Surfaces and Interfaces, vol. 6, pp. 247–255, 2017.
  • M. Tsukada, M. Wakamura, N. Yoshida, T. Watanabe, “Band gap and photocatalytic properties of Ti-substituted hydroxyapatite: Comparison with anatase-TiO2,” J. Mol. Catal. A-Chemical, vol. 338, no. 1–2, pp. 18–23, 2011.
  • V. S. Bystrov, E. Paramonova, L. Avakyan, J. Coutinho, N. Bulina, “Simulation and computer study of structures and physical properties of hydroxyapatite with various defects,"Nanomaterials" vol. 11, no. 10, 2021,
  • V. S. Bystrov, J. Coutinho, A. V. Bystrova, D. Y. Dekhtyar, R. C. Pullar, A. Poronin, A. Palcevskis, A. Dindune, B. Alkan, B. C. Durucan, E. V. Paramonova, “Computational study of hydroxyapatite structures, properties and defects,” J. Phys. D. Appl. Phys., vol. 48, no. 19, pp. 195302, 2015
  • R. Rial, M. Gonzalez-Durruthy, Z. Liu, J. M. Ruso, “Advanced materials based on nanosized hydroxyapatite,” Molecules, vol. 26, no. 11, 2021
  • A. C. Larson, R. Von Dreele, “General Structure Analysis System (GSAS),” Los Alamos National. Laboratory Rep. LAUR, pp. 86–748, 2004.
  • P. Thompson, D. E. Cox, J. B. Hastings, “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from A1203,” Journal of Applied Crystallography, vol. 20, no. 2, pp. 79–83, 1987.
  • J. Laugier, B. Bochu, “LMGP-suite of programs for the interpretation of X-ray experiments.” ENSP/Laboratoire des Matériaux et du Génie Physique, 1999.
  • K. Sudarsanan, R. A. Young, “Significant precision in crystal structural details. Holly Springs hydroxyapatite,” Acta Crystallographica Section B, vol. 25, no. 8, pp. 1534–1543, 1969.
  • R. Gopal, C. Calvo, J. Ito, W. K. Sabine, “Crystal structure of synthetic Mg-Whitlockite, Ca18Mg2H2(PO4)14,” Canadian Journal of Chemistry, vol. 52, no. 7, pp. 1155–1164, 1974.
  • E. Hosseinzadeh, M. Davarpanah, N. H. Nemati, S. A. Tavakoli, “Fabrication of a hard tissue replacement using natural hydroxyapatite derived from bovine bones by thermal decomposition method,” International Journal of Organ Transplantation Medicine, vol. 5, no. 1, pp. 23–31, 2014.
  • R. X. Sun, Y. Lv, Y. R. Niu, X. H. Zhao, D. S. Cao, J. Tang, J., K. Z. Chen, “Physicochemical and biological properties of bovine-derived porous hydroxyapatite/collagen composite and its hydroxyapatite powders,” Ceram. Int., vol. 43, no. 18, pp. 16792–16798, 2017.
  • J. M. Stutman, J. D. Termine, A. S. Posner, “Vibrational spectra and structure of the phosphate ion in some calcium phosphates,” Trans. N. Y. Academic Science, vol. 27, no. 6 Series II, pp. 669–675, 1965.
  • J. Tauc, “Optical Properties and Electronic Structure of Amorphous Semiconductors,” in Optical Properties of Solids, S. Nudelman and S. S. Mitra, Eds., Boston, MA: Springer US, 1969, pp. 123–136.
  • M. Šupová, “Problems associated with the assessment of organic impurities in bioapatites isolated from animal sources: A review,” Journal of the Australian Ceramic Society, vol. 58, no. 1, pp. 227–247, 2022.

Balık Pullarından Elde Edilen Hidroksiapatitin Renk ve Optik Özelliklerinde Hava Maruziyetine Bağlı Değişimler

Year 2025, Volume: 29 Issue: 1, 125 - 139, 28.02.2025
https://doi.org/10.16984/saufenbilder.1589238

Abstract

Balık pullarının atık olarak bertaraf edilmesi, çevresel bir sorun ve kaynak geri kazanımı için değerlendirilmeyen bir fırsat sunmaktadır. Bu çalışmada, Avrupa levreği (Dicentrarchus labrax) pullarından hidroksiapatit (HAp) elde edilerek, kalsinasyon sırasında hava maruziyetinin optik ve yüzey özellikleri üzerindeki etkisi araştırılmıştır. HAp tozları, tamamen havaya maruz bırakılan (beyaz toz üreten) ve kısmen havadan korunan (gri toz üreten) iki farklı kalsinasyon koşulunda hazırlanmıştır. X-ışını toz kırınımı (XRPD) verilerinin Rietveld analizi, her iki tozun da hekzagonal HAp yapısında kristalleştiğini ve az miktarda Mg-whitlockite safsızlığı içerdiğini doğrulamaktadır. Hava maruziyetindeki bu farklılıklara rağmen, HAp'ın kristal yapısı değişmeden kalmaktadır. Renk farklılıkları yüzey oksidasyonuna bağlanmakta, çünkü kısmen korunmuş pulların alt katmanları gri tonunu korurken, açıkta kalan yüzeyler tamamen beyaza dönmektedir. Taramalı elektron mikroskobu, beyaz tozun daha düzgün bir yüzeye, gri tozun ise hafifçe pürüzlü bir yüzeye sahip olduğunu göstermektedir. Fourier dönüşümlü kızılötesi (FTIR) spektrumları, her iki tozda da karakteristik fosfat ve hidroksil gruplarının varlığını doğrulamakta, HAp'ın çekirdek kimyasal yapısının her iki durumda da korunduğunu göstermektedir. Rietveld analizi ile elde edilen beyaz toz için 1.504(7) ve gri toz için 1.505(7) olarak belirlenen Ca/P oranları, malzemenin stokiyometrik bütünlüğünü desteklemektedir. UV-Vis spektroskopisi, beyaz toz için 3.99 eV ve gri toz için 3.87 eV bant aralığı değerlerini ortaya koymaktadır. Bu bant aralığı değerleri, kusursuz HAp için genellikle bildirilen (5–6 eV) değerlerden daha düşük olup, optik farklılıkların iç yapısındaki değişikliklerden ziyade oksijen boşlukları veya safsızlıklar gibi yüzey etkilerinden kaynaklandığını önermektedir. Bu çalışma, kalsinasyon koşullarının, özellikle hava maruziyetinin, HAp'ın yüzey özellikleri ve optik davranışını nasıl etkilediğini vurgulamakta ve balık pullarından türetilmiş HAp'ın elektronik ve optik malzemelerdeki potansiyel uygulamalarına ışık tutmaktadır.

References

  • P. W. Brown, B. Constantz, Hydroxyapatite and related materials, USA:CRC press Boca Raton, 1994.
  • H. Cölfen, “A crystal-clear view,” Nature Materials, vol. 9, no. 12, pp. 960–961, 2010.
  • S. F. Jackson, J. T. Randall, “The fine structure of bone,” Nature, vol. 178, no. 4537, p. 798, 1956.
  • R. Murugan, S. Ramakrishna, “Development of nanocomposites for bone grafting,” Composites Science and Technology, vol. 65, no. 15, pp. 2385–2406, 2005.
  • N. Eliaz, N. Metoki, “Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications.,” Materials (Basel, Switzerland), vol. 10, no. 4, 2017.
  • A. S. Posner, A. Perloff, A. F. Diorio, “Refinement of the hydroxyapatite structure,” Acta Crystallogr., vol. 11, no. 4, pp. 308–309, 1958.
  • J. C. Elliott, P. E. Mackie, R. A. Young, “Monoclinic hydroxyapatite,” Science, vol. 180, no. 4090, pp. 1055–1057, 1973.
  • G. Ma, X. Y. Liu, “Hydroxyapatite: hexagonal or monoclinic?,” Crystal Growth & Design, vol. 9, no. 7, pp. 2991–2994, Jul. 2009.
  • M. Sadat-Shojai, M.-T. Khorasani, E. Dinpanah-Khoshdargi, A. Jamshidi, “Synthesis methods for nanosized hydroxyapatite with diverse structures,” Acta Biomaterials, vol. 9, no. 8, pp. 7591–7621, 2013.
  • P. Arokiasamy, M. M. A. B Abdullah, S. Z. Abd Rahim, S. Luhar, A. V. Sandu, N. H. Jamil, M. Nabiałek, “Synthesis methods of hydroxyapatite from natural sources: A review,” Ceramics International, vol. 48, no. 11, pp. 14959–14979, 2022.
  • N. A. S. Mohd Pu’ad, P. Koshy, H. Z. Abdullah, M. I. Idris, T. C. Lee, “Syntheses of hydroxyapatite from natural sources,” Heliyon, vol. 5, no. 5, p. e01588, 2019.
  • V.-R. Maria, D. A. Navarrete, D. Arcos, Biomimetic Nanoceramics in Clinical Use: From Materials to Applications. Cambridge: Royal Society of Chemistry, 2008.
  • T. Eknapakul, S. Kuimalee, W. Sailuam, S. Daengsakul, N. Tanapongpisit, P. Laohana, W. Saenrang, A. Bootchanont, A. Khamkongkaeo, R. Yimnirun, “Impacts of pre-treatment methods on the morphology, crystal structure, and defects formation of hydroxyapatite extracted from Nile tilapia scales,” RSC Advances, vol. 14, no. 7, pp. 4614–4622, 2024.
  • H. E. Okur, “Rietveld refinement-based structural analysis of biogenic hydroxyapatite and its PVA composite for dye removal,” Mater. Today Commun., vol. 43, p. 111723, 2025
  • G. Rosenman, D. Aronov, L. Oster, “Photoluminescence and surface photovoltage spectroscopy studies of hydroxyapatite nano-Bio-ceramics,” Journal of Luminescence, vol. 122–123, pp. 936–938, 2007.
  • K. Matsunaga, A. Kuwabara, “First-principles study of vacancy formation in hydroxyapatite,” Physical Review B, vol. 75, no. 1, p. 14102, 2007.
  • L. Calderin, M. J. Stott, A. Rubio, “Electronic and crystallographic structure of apatites,” Physical Review. B, vol. 67, no. 13, p. 134106, 2003.
  • P. Rulis, L. Ouyang, W. Y. Ching, “Electronic structure and bonding in calcium apatite crystals: Hydroxyapatite, fluorapatite, chlorapatite, and bromapatite,” Physical Review B, vol. 70, no. 15, p. 155104, 2004.
  • L. A. Avakyan, E. V Paramonova, J. Coutinho, S. Oberg, V. S. Bystrov, L. A. Bugaev, “Optoelectronics and defect levels in hydroxyapatite by first-principles,” Journal of Chemical Physics, vol. 148, no. 15, 2018.
  • K. Kaviyarasu, A. Mariappan, K. Neyvasagam, A. Ayeshamariam, P. Pandi, R. R. Palanichamy, C. Gopinathan, G. T. Mola, M. Maaza “Photocatalytic performance and antimicrobial activities of HAp-TiO2 nanocomposite thin films by sol-gel method,” Surfaces and Interfaces, vol. 6, pp. 247–255, 2017.
  • M. Tsukada, M. Wakamura, N. Yoshida, T. Watanabe, “Band gap and photocatalytic properties of Ti-substituted hydroxyapatite: Comparison with anatase-TiO2,” J. Mol. Catal. A-Chemical, vol. 338, no. 1–2, pp. 18–23, 2011.
  • V. S. Bystrov, E. Paramonova, L. Avakyan, J. Coutinho, N. Bulina, “Simulation and computer study of structures and physical properties of hydroxyapatite with various defects,"Nanomaterials" vol. 11, no. 10, 2021,
  • V. S. Bystrov, J. Coutinho, A. V. Bystrova, D. Y. Dekhtyar, R. C. Pullar, A. Poronin, A. Palcevskis, A. Dindune, B. Alkan, B. C. Durucan, E. V. Paramonova, “Computational study of hydroxyapatite structures, properties and defects,” J. Phys. D. Appl. Phys., vol. 48, no. 19, pp. 195302, 2015
  • R. Rial, M. Gonzalez-Durruthy, Z. Liu, J. M. Ruso, “Advanced materials based on nanosized hydroxyapatite,” Molecules, vol. 26, no. 11, 2021
  • A. C. Larson, R. Von Dreele, “General Structure Analysis System (GSAS),” Los Alamos National. Laboratory Rep. LAUR, pp. 86–748, 2004.
  • P. Thompson, D. E. Cox, J. B. Hastings, “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from A1203,” Journal of Applied Crystallography, vol. 20, no. 2, pp. 79–83, 1987.
  • J. Laugier, B. Bochu, “LMGP-suite of programs for the interpretation of X-ray experiments.” ENSP/Laboratoire des Matériaux et du Génie Physique, 1999.
  • K. Sudarsanan, R. A. Young, “Significant precision in crystal structural details. Holly Springs hydroxyapatite,” Acta Crystallographica Section B, vol. 25, no. 8, pp. 1534–1543, 1969.
  • R. Gopal, C. Calvo, J. Ito, W. K. Sabine, “Crystal structure of synthetic Mg-Whitlockite, Ca18Mg2H2(PO4)14,” Canadian Journal of Chemistry, vol. 52, no. 7, pp. 1155–1164, 1974.
  • E. Hosseinzadeh, M. Davarpanah, N. H. Nemati, S. A. Tavakoli, “Fabrication of a hard tissue replacement using natural hydroxyapatite derived from bovine bones by thermal decomposition method,” International Journal of Organ Transplantation Medicine, vol. 5, no. 1, pp. 23–31, 2014.
  • R. X. Sun, Y. Lv, Y. R. Niu, X. H. Zhao, D. S. Cao, J. Tang, J., K. Z. Chen, “Physicochemical and biological properties of bovine-derived porous hydroxyapatite/collagen composite and its hydroxyapatite powders,” Ceram. Int., vol. 43, no. 18, pp. 16792–16798, 2017.
  • J. M. Stutman, J. D. Termine, A. S. Posner, “Vibrational spectra and structure of the phosphate ion in some calcium phosphates,” Trans. N. Y. Academic Science, vol. 27, no. 6 Series II, pp. 669–675, 1965.
  • J. Tauc, “Optical Properties and Electronic Structure of Amorphous Semiconductors,” in Optical Properties of Solids, S. Nudelman and S. S. Mitra, Eds., Boston, MA: Springer US, 1969, pp. 123–136.
  • M. Šupová, “Problems associated with the assessment of organic impurities in bioapatites isolated from animal sources: A review,” Journal of the Australian Ceramic Society, vol. 58, no. 1, pp. 227–247, 2022.
There are 34 citations in total.

Details

Primary Language English
Subjects Inorganic Chemistry (Other)
Journal Section Research Articles
Authors

H. Esma Okur 0000-0003-3439-0716

Early Pub Date February 28, 2025
Publication Date February 28, 2025
Submission Date November 21, 2024
Acceptance Date February 25, 2025
Published in Issue Year 2025 Volume: 29 Issue: 1

Cite

APA Okur, H. E. (2025). Air-Exposure-Driven Color and Optical Variations in Hydroxyapatite Extracted from Fish Scales. Sakarya University Journal of Science, 29(1), 125-139. https://doi.org/10.16984/saufenbilder.1589238
AMA Okur HE. Air-Exposure-Driven Color and Optical Variations in Hydroxyapatite Extracted from Fish Scales. SAUJS. February 2025;29(1):125-139. doi:10.16984/saufenbilder.1589238
Chicago Okur, H. Esma. “Air-Exposure-Driven Color and Optical Variations in Hydroxyapatite Extracted from Fish Scales”. Sakarya University Journal of Science 29, no. 1 (February 2025): 125-39. https://doi.org/10.16984/saufenbilder.1589238.
EndNote Okur HE (February 1, 2025) Air-Exposure-Driven Color and Optical Variations in Hydroxyapatite Extracted from Fish Scales. Sakarya University Journal of Science 29 1 125–139.
IEEE H. E. Okur, “Air-Exposure-Driven Color and Optical Variations in Hydroxyapatite Extracted from Fish Scales”, SAUJS, vol. 29, no. 1, pp. 125–139, 2025, doi: 10.16984/saufenbilder.1589238.
ISNAD Okur, H. Esma. “Air-Exposure-Driven Color and Optical Variations in Hydroxyapatite Extracted from Fish Scales”. Sakarya University Journal of Science 29/1 (February 2025), 125-139. https://doi.org/10.16984/saufenbilder.1589238.
JAMA Okur HE. Air-Exposure-Driven Color and Optical Variations in Hydroxyapatite Extracted from Fish Scales. SAUJS. 2025;29:125–139.
MLA Okur, H. Esma. “Air-Exposure-Driven Color and Optical Variations in Hydroxyapatite Extracted from Fish Scales”. Sakarya University Journal of Science, vol. 29, no. 1, 2025, pp. 125-39, doi:10.16984/saufenbilder.1589238.
Vancouver Okur HE. Air-Exposure-Driven Color and Optical Variations in Hydroxyapatite Extracted from Fish Scales. SAUJS. 2025;29(1):125-39.


INDEXING & ABSTRACTING & ARCHIVING

33418 33537  30939     30940 30943 30941  30942  33255  33252  33253  33254

30944  30945  30946




30930Bu eser Creative Commons Atıf-Ticari Olmayan 4.0 Uluslararası Lisans   kapsamında lisanslanmıştır .