Glikojen Depoları , Egzersiz Antrenmanı ve Diyet Etkileşimi
Year 2017,
Volume: 28 Issue: 4, 205 - 219, 16.03.2018
Süleyman Bulut
,
Hüsrev Turnagöl
Abstract
Bireylerin diyetlerinin değiştirilmesinin iskelet kası yakıt kullanımına etkisi uzun süredir yoğun ilgi çekmekte olup bu konuda çok sayıda çalışma bulunmaktadır. Son yıllarda, besin-egzersiz etkileşiminin ve buna bağlı olarak glikojen depolarının hücre içi sinyal yollarını nasıl etkilediğini anlamaya yönelik artan bir çaba bulunmaktadır. Bu derleme kapsamında, glikojen depoları boş durumda iken yapılan egzersizin hücresel metabolik etkileri ve oluşan adaptasyon evreleri tartışılacaktır. Düşük glikojen depoları ile antrenman yapmanın submaksimal egzersizlerde yağ oksidasyonu ile ilgili hücresel sinyal yollarını etkilediği bilinmekle beraber bunun egzersiz performansını nasıl etkileyeceği tam olarak bilinmemektedir. Sağlık ve sportif performansın düşük glikojen depoları ile yapılan egzersizden sağlayacağı faydaların belirlenebilmesi için daha fazla araştırmaya gerek duyulmaktadır. Bunun yanında, sporcu ve antrenörlerin antrenman periyotlaması içerisinde düşük glikojen depoları ile antrenmanın avantaj ve dezavantajlarını iyi değerlendirmeleri gerekmektedir.
References
- Akerstrom, T. C., Birk, J. B., Klein, D. K., Erikstrup, C., Plomgaard, P., Pedersen, B. K., & Wojtaszewski, J. (2006). Oral glucose ingestion attenuates exercise-induced activation of 5'-AMP-activated protein kinase in human skeletal muscle. Biochem Biophys Res Commun, 342(3), 949-955.
Akimoto, T., Sorg, B. S., & Yan, Z. (2004). Real-time imaging of peroxisome proliferator-activated receptor-gamma coactivator-1alpha promoter activity in skeletal muscles of living mice. Am J Physiol Cell Physiol, 287(3), C790-796. doi:10.1152/ajpcell.00425.2003
Arkinstall, M. J., Tunstall, R. J., Cameron-Smith, D., & Hawley, J. A. (2004). Regulation of metabolic genes in human skeletal muscle by short-term exercise and diet manipulation. Am J Physiol Endocrinol Metab, 287(1), E25-31. doi:10.1152/ajpendo.00557.2003
Baar, K., & McGee, S. (2008). Optimizing training adaptations by manipulating glycogen. European Journal of Sport Science, 8(2), 97-106. doi:10.1080/17461390801919094
Bergstrom, J., Guarnieri, G., & Hultman, E. (1971). Carbohydrate metabolism and electrolyte changes in human muscle tissue during heavy work. J Appl Physiol, 30(1), 122-125.
Bergstrom, J., Hermansen, L., Hultman, E., & Saltin, B. (1967). Diet, muscle glycogen and physical performance. Acta Physiol Scand, 71(2), 140-150. doi:10.1111/j.1748-1716.1967.tb03720.x
Blomstrand, E., & Saltin, B. (1999). Effect of muscle glycogen on glucose, lactate and amino acid metabolism during exercise and recovery in human subjects. J Physiol, 514 ( Pt 1), 293-302.
Booth, F. W., & Thomason, D. B. (1991). Molecular and cellular adaptation of muscle in response to exercise: perspectives of various models. Physiol Rev, 71(2), 541-585.
Burke, L. M. (2010). Fueling strategies to optimize performance: training high or training low? Scand J Med Sci Sports, 20 Suppl 2, 48-58. doi:10.1111/j.1600-0838.2010.01185.x
Burke, L. M., Angus, D. J., Cox, G. R., Cummings, N. K., Febbraio, M. A., Gawthorn, K., Hargreaves, M. (2000). Effect of fat adaptation and carbohydrate restoration on metabolism and performance during prolonged cycling. J Appl Physiol, 89(6), 2413-2421.
Burke, L. M., Hawley, J. A., Wong, S. H., & Jeukendrup, A. E. (2011). Carbohydrates for training and competition. J Sports Sci, 29 Suppl 1, S17-27. doi:10.1080/02640414.2011.585473
Carey, A. L., Staudacher, H. M., Cummings, N. K., Stepto, N. K., Nikolopoulos, V., Burke, L. M., & Hawley, J. A. (2001). Effects of fat adaptation and carbohydrate restoration on prolonged endurance exercise. J Appl Physiol, 91(1), 115-122.
Chakravarthy, M. V., & Booth, F. W. (2004). Eating, exercise, and "thrifty" genotypes: connecting the dots toward an evolutionary understanding of modern chronic diseases. J Appl Physiol, 96(1), 3-10. doi:10.1152/japplphysiol.00757.2003
Chan, M. H. S., McGee, S. L., Watt, M. J., Hargreaves, M., & Febbraio, M. A. (2004). Altering dietary nutrient intake that reduces glycogen content leads to phosphorylation of nuclear p38 MAP kinase in human skeletal muscle: association with IL-6 gene transcription during contraction. Faseb Journal, 18(12), 1785-+. doi:DOI 10.1096/fj.03-1039fje
Churchley, E. G., Coffey, V. G., Pedersen, D. J., Shield, A., Carey, K. A., Cameron-Smith, D., & Hawley, J. A. (2007). Influence of preexercise muscle glycogen content on transcriptional activity of metabolic and myogenic genes in well-trained humans. J Appl Physiol, 102(4), 1604-1611. doi:10.1152/japplphysiol.01260.2006
Coffey, V. G., & Hawley, J. A. (2007). Themolecular bases of training adaptation. Sports Med, 37(9), 737-763.
Coyle, E. F. (2000). Physical activity as a metabolic stressor. Am J Clin Nutr, 72(2 Suppl), 512s-520s.
Coyle, E. F., Coggan, A. R., Hemmert, M. K., & Ivy, J. L. (1986). Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol (1985), 61(1), 165-172.
Febbraio, M. A., Steensberg, A., Walsh, R., Koukoulas, I., van Hall, G., Saltin, B., & Pedersen, B. K. (2002). Reduced glycogen availability is associated with an elevation in HSP72 in contracting human skeletal muscle. Journal of Physiology-London, 538(3), 911-917. doi:DOI 10.1013/jphysiol.2001.013145
Flatt, J. P. (1995). Use and storage of carbohydrate and fat. Am J Clin Nutr, 61(4 Suppl), 952s-959s.
Graham, T. E., & Adamo, K. B. (1999). Dietary carbohydrate and its effects on metabolism and substrate stores in sedentary and active individuals. Can J Appl Physiol, 24(5), 393-415.
Handschin, C., & Spiegelman, B. M. (2008). The role of exercise and PGC1alpha in inflammation and chronic disease. Nature, 454(7203), 463-469. doi:10.1038/nature07206
Hansen, A. K., Fischer, C. P., Plomgaard, P., Andersen, J. L., Saltin, B., & Pedersen, B. K. (2005). Skeletal muscle adaptation: training twice every second day vs. training once daily. J Appl Physiol, 98(1), 93-99. doi:10.1152/japplphysiol.00163.2004
Hargreaves, M., & Cameron-Smith, D. (2002). Exercise, diet, and skeletal muscle gene expression. Med Sci Sports Exerc, 34(9), 1505-1508. doi:10.1249/01.mss.0000027692.52347.6d
Hawley, J. A., & Burke, L. M. (2010). Carbohydrate availability and training adaptation: effects on cell metabolism. Exerc Sport Sci Rev, 38(4), 152-160. doi:10.1097/JES.0b013e3181f44dd9
Hawley, J. A., Burke, L. M., Phillips, S. M., & Spriet, L. L. (2011). Nutritional modulation of training-induced skeletal muscle adaptations. J Appl Physiol, 110(3), 834-845. doi:10.1152/japplphysiol.00949.2010
Hawley, J. A., Tipton, K. D., & Millard-Stafford, M. L. (2006). Promoting training adaptations through nutritional interventions. J Sports Sci, 24(7), 709-721. doi:10.1080/02640410500482727
Hulston, C. J., Venables, M. C., Mann, C. H., Martin, C., Philp, A., Baar, K., & Jeukendrup, A. E. (2010). Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Med Sci Sports Exerc, 42(11), 2046-2055. doi:10.1249/MSS.0b013e3181dd5070
Hultman, E., & Bergstrom, J. (1967). Muscle glycogen synthesis in relation to diet studied in normal subjects. Acta Med Scand, 182(1), 109-117.
Hultman, E., Bergström, J., & Roch-Norlund, A. E. (1971). Glycogen Storage in Human Skeletal Muscle. In B. Pernow & B. Saltin (Eds.), Muscle Metabolism During Exercise (Vol. 11, pp. 273-288): Springer US.
Jequier, E., & Tappy, L. (1999). Regulation of body weight in humans. Physiol Rev, 79(2), 451-480.
Jump, D. B., & Clarke, S. D. (1999). Regulation of gene expression by dietary fat. Annu Rev Nutr, 19, 63-90. doi:10.1146/annurev.nutr.19.1.63
Kelly, M., Keller, C., Avilucea, P. R., Keller, P., Luo, Z., Xiang, X., Ruderman, N. B. (2004). AMPK activity is diminished in tissues of IL-6 knockout mice: the effect of exercise. Biochem Biophys Res Commun, 320(2), 449-454. doi:10.1016/j.bbrc.2004.05.188
Kirwan, J. P., & Jing, M. (2002). Modulation of insulin signaling in human skeletal muscle in response to exercise. Exerc Sport Sci Rev, 30(2), 85-90.
Lavin, J. H., Wittert, G., Sun, W. M., Horowitz, M., Morley, J. E., & Read, N. W. (1996). Appetite regulation by carbohydrate: role of blood glucose and gastrointestinal hormones. Am J Physiol, 271(2 Pt 1), E209-214.
Lee-Young, R. S., Palmer, M. J., Linden, K. C., LePlastrier, K., Canny, B. J., Hargreaves, M., McConell, G. K. (2006). Carbohydrate ingestion does not alter skeletal muscle AMPK signaling during exercise in humans. Am J Physiol Endocrinol Metab, 291(3), E566-573. doi:10.1152/ajpendo.00023.2006
Low, S. Y., Rennie, M. J., & Taylor, P. M. (1996). Modulation of glycogen synthesis in rat skeletal muscle by changes in cell volume. J Physiol, 495 ( Pt 2), 299-303.
McBride, A., Ghilagaber, S., Nikolaev, A., & Hardie, D. G. (2009). The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor. Cell Metab, 9(1), 23-34. doi:10.1016/j.cmet.2008.11.008
Mikulski, T., Ziemba, A., & Nazar, K. (2008). Influence of body carbohydrate store modification on catecholamine and lactate responses to graded exercise in sedentary and physically active subjects. J Physiol Pharmacol, 59(3), 603-616.
Philp, A., Burke, L. M., & Baar, K. (2011). Altering endogenous carbohydrate availability to support training adaptations. Nestle Nutr Inst Workshop Ser, 69, 19-31.
Philp, A., Hargreaves, M., & Baar, K. (2012). More than a store: Regulatory roles for glycogen in skeletal muscle adaptation to exercise. Am J Physiol Endocrinol Metab. doi:10.1152/ajpendo.00004.2012
Pilegaard, H., Keller, C., Steensberg, A., Helge, J. W., Pedersen, B. K., Saltin, B., & Neufer, P. D. (2002). Influence of pre-exercise muscle glycogen content on exercise-induced transcriptional regulation of metabolic genes. J Physiol, 541(Pt 1), 261-271. doi:10.1113/jphysiol.2002.016832
Podolin, D. A., Munger, P. A., & Mazzeo, R. S. (1991). Plasma catecholamine and lactate response during graded exercise with varied glycogen conditions. J Appl Physiol, 71(4), 1427-1433.
Printen, J. A., Brady, M. J., & Saltiel, A. R. (1997). PTG, a protein phosphatase 1-binding protein with a role in glycogen metabolism. Science, 275(5305), 1475-1478. doi:10.1126/science.275.5305.1475
Sheikh-Hamad, D., & Gustin, M. C. (2004). MAP kinases and the adaptive response to hypertonicity: functional preservation from yeast to mammals. Am J Physiol Renal Physiol, 287(6), F1102-1110. doi:10.1152/ajprenal.00225.2004
Spriet, L. L., & Peters, S. J. (1998). Influence of diet on the metabolic responses to exercise. Proc Nutr Soc, 57(1), 25-33.
Stapleton, D., Nelson, C., Parsawar, K., McClain, D., Gilbert-Wilson, R., Barker, E., Parker, G. (2010). Analysis of hepatic glycogen-associated proteins. Proteomics, 10(12), 2320-2329. doi:10.1002/pmic.200900628
Steensberg, A., van Hall, G., Keller, C., Osada, T., Schjerling, P., Pedersen, B. K., Febbraio, M. A. (2002). Muscle glycogen content and glucose uptake during exercise in humans: influence of prior exercise and dietary manipulation. J Physiol, 541(Pt 1), 273-281. doi:10.1113/jphysiol.2001.015594
Steinacker, J. M., Lormes, W., Reissnecker, S., & Liu, Y. (2004). New aspects of the hormone and cytokine response to training. Eur J Appl Physiol, 91(4), 382-391. doi:10.1007/s00421-003-0960-x
Stellingwerff, T., Boit, M. K., & Res, P. T. (2007). Nutritional strategies to optimize training and racing in middle-distance athletes. J Sports Sci, 25 Suppl 1, S17-28. doi:10.1080/02640410701607213
Thomas, C. D., Peters, J. C., Reed, G. W., Abumrad, N. N., Sun, M., & Hill, J. O. (1992). Nutrient balance and energy expenditure during ad libitum feeding of high-fat and high-carbohydrate diets in humans. Am J Clin Nutr, 55(5), 934-942.
Towler, M. C., & Hardie, D. G. (2007). AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res, 100(3), 328-341. doi:10.1161/01.res.0000256090.42690.05
Tremblay, A., Lavallee, N., Almeras, N., Allard, L., Despres, J. P., & Bouchard, C. (1991). Nutritional determinants of the increase in energy intake associated with a high-fat diet. Am J Clin Nutr, 53(5), 1134-1137.
Watt, M. J., & Hargreaves, M. (2002). Effect of epinephrine on glucose disposal during exercise in humans: role of muscle glycogen. Am J Physiol Endocrinol Metab, 283(3), E578-583.
Weltan, S. M., Bosch, A. N., Dennis, S. C., & Noakes, T. D. (1998). Preexercise muscle glycogen content affects metabolism during exercise despite maintenance of hyperglycemia. Am J Physiol, 274(1 Pt 1), E83-88.
Widegren, U., Jiang, X. J., Krook, A., Chibalin, A. V., Bjornholm, M., Tally, M., Zierath, J. R. (1998). Divergent effects of exercise on metabolic and mitogenic signaling pathways in human skeletal muscle. FASEB J, 12(13), 1379-1389.
Yeo, W. K., McGee, S. L., Carey, A. L., Paton, C. D., Garnham, A. P., Hargreaves, M., & Hawley, J. A. (2010). Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen. Exp Physiol, 95(2), 351-358. doi:10.1113/expphysiol.2009.049353
Yeo, W. K., Paton, C. D., Garnham, A. P., Burke, L. M., Carey, A. L., & Hawley, J. A. (2008). Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol, 105(5), 1462-1470. doi:10.1152/japplphysiol.90882.2008
Glycogen Stores, Training and Diet Interactions
Year 2017,
Volume: 28 Issue: 4, 205 - 219, 16.03.2018
Süleyman Bulut
,
Hüsrev Turnagöl
Abstract
There are numerous studies on the effects of changing individual diet on skeletal muscle substrate utilization and there has been huge, longstanding interest to the subject. Beside, there is a growing body of effort to understand how exercise-nutrient interactions and, consequently, the glycogen stores stimulate intracellular signaling pathways. In this review, the cellular metabolic effects of the exercise performed with empty glycogen stores and the resulting adaptation periods will be discussed. Although it has been known that training with low muscle glycogen stores modulates cellular signaling pathways related to fat oxidation during submaximal exercise, it is not clear how this could be translated into exercise performance. More research determining the benefits of exercise with low glycogen stores for health and sports performance is needed. In addition, pros and cons of training with low glycogen stores should be evaluated very carefully by the athletes and coaches within the periodized training programme.
References
- Akerstrom, T. C., Birk, J. B., Klein, D. K., Erikstrup, C., Plomgaard, P., Pedersen, B. K., & Wojtaszewski, J. (2006). Oral glucose ingestion attenuates exercise-induced activation of 5'-AMP-activated protein kinase in human skeletal muscle. Biochem Biophys Res Commun, 342(3), 949-955.
Akimoto, T., Sorg, B. S., & Yan, Z. (2004). Real-time imaging of peroxisome proliferator-activated receptor-gamma coactivator-1alpha promoter activity in skeletal muscles of living mice. Am J Physiol Cell Physiol, 287(3), C790-796. doi:10.1152/ajpcell.00425.2003
Arkinstall, M. J., Tunstall, R. J., Cameron-Smith, D., & Hawley, J. A. (2004). Regulation of metabolic genes in human skeletal muscle by short-term exercise and diet manipulation. Am J Physiol Endocrinol Metab, 287(1), E25-31. doi:10.1152/ajpendo.00557.2003
Baar, K., & McGee, S. (2008). Optimizing training adaptations by manipulating glycogen. European Journal of Sport Science, 8(2), 97-106. doi:10.1080/17461390801919094
Bergstrom, J., Guarnieri, G., & Hultman, E. (1971). Carbohydrate metabolism and electrolyte changes in human muscle tissue during heavy work. J Appl Physiol, 30(1), 122-125.
Bergstrom, J., Hermansen, L., Hultman, E., & Saltin, B. (1967). Diet, muscle glycogen and physical performance. Acta Physiol Scand, 71(2), 140-150. doi:10.1111/j.1748-1716.1967.tb03720.x
Blomstrand, E., & Saltin, B. (1999). Effect of muscle glycogen on glucose, lactate and amino acid metabolism during exercise and recovery in human subjects. J Physiol, 514 ( Pt 1), 293-302.
Booth, F. W., & Thomason, D. B. (1991). Molecular and cellular adaptation of muscle in response to exercise: perspectives of various models. Physiol Rev, 71(2), 541-585.
Burke, L. M. (2010). Fueling strategies to optimize performance: training high or training low? Scand J Med Sci Sports, 20 Suppl 2, 48-58. doi:10.1111/j.1600-0838.2010.01185.x
Burke, L. M., Angus, D. J., Cox, G. R., Cummings, N. K., Febbraio, M. A., Gawthorn, K., Hargreaves, M. (2000). Effect of fat adaptation and carbohydrate restoration on metabolism and performance during prolonged cycling. J Appl Physiol, 89(6), 2413-2421.
Burke, L. M., Hawley, J. A., Wong, S. H., & Jeukendrup, A. E. (2011). Carbohydrates for training and competition. J Sports Sci, 29 Suppl 1, S17-27. doi:10.1080/02640414.2011.585473
Carey, A. L., Staudacher, H. M., Cummings, N. K., Stepto, N. K., Nikolopoulos, V., Burke, L. M., & Hawley, J. A. (2001). Effects of fat adaptation and carbohydrate restoration on prolonged endurance exercise. J Appl Physiol, 91(1), 115-122.
Chakravarthy, M. V., & Booth, F. W. (2004). Eating, exercise, and "thrifty" genotypes: connecting the dots toward an evolutionary understanding of modern chronic diseases. J Appl Physiol, 96(1), 3-10. doi:10.1152/japplphysiol.00757.2003
Chan, M. H. S., McGee, S. L., Watt, M. J., Hargreaves, M., & Febbraio, M. A. (2004). Altering dietary nutrient intake that reduces glycogen content leads to phosphorylation of nuclear p38 MAP kinase in human skeletal muscle: association with IL-6 gene transcription during contraction. Faseb Journal, 18(12), 1785-+. doi:DOI 10.1096/fj.03-1039fje
Churchley, E. G., Coffey, V. G., Pedersen, D. J., Shield, A., Carey, K. A., Cameron-Smith, D., & Hawley, J. A. (2007). Influence of preexercise muscle glycogen content on transcriptional activity of metabolic and myogenic genes in well-trained humans. J Appl Physiol, 102(4), 1604-1611. doi:10.1152/japplphysiol.01260.2006
Coffey, V. G., & Hawley, J. A. (2007). Themolecular bases of training adaptation. Sports Med, 37(9), 737-763.
Coyle, E. F. (2000). Physical activity as a metabolic stressor. Am J Clin Nutr, 72(2 Suppl), 512s-520s.
Coyle, E. F., Coggan, A. R., Hemmert, M. K., & Ivy, J. L. (1986). Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol (1985), 61(1), 165-172.
Febbraio, M. A., Steensberg, A., Walsh, R., Koukoulas, I., van Hall, G., Saltin, B., & Pedersen, B. K. (2002). Reduced glycogen availability is associated with an elevation in HSP72 in contracting human skeletal muscle. Journal of Physiology-London, 538(3), 911-917. doi:DOI 10.1013/jphysiol.2001.013145
Flatt, J. P. (1995). Use and storage of carbohydrate and fat. Am J Clin Nutr, 61(4 Suppl), 952s-959s.
Graham, T. E., & Adamo, K. B. (1999). Dietary carbohydrate and its effects on metabolism and substrate stores in sedentary and active individuals. Can J Appl Physiol, 24(5), 393-415.
Handschin, C., & Spiegelman, B. M. (2008). The role of exercise and PGC1alpha in inflammation and chronic disease. Nature, 454(7203), 463-469. doi:10.1038/nature07206
Hansen, A. K., Fischer, C. P., Plomgaard, P., Andersen, J. L., Saltin, B., & Pedersen, B. K. (2005). Skeletal muscle adaptation: training twice every second day vs. training once daily. J Appl Physiol, 98(1), 93-99. doi:10.1152/japplphysiol.00163.2004
Hargreaves, M., & Cameron-Smith, D. (2002). Exercise, diet, and skeletal muscle gene expression. Med Sci Sports Exerc, 34(9), 1505-1508. doi:10.1249/01.mss.0000027692.52347.6d
Hawley, J. A., & Burke, L. M. (2010). Carbohydrate availability and training adaptation: effects on cell metabolism. Exerc Sport Sci Rev, 38(4), 152-160. doi:10.1097/JES.0b013e3181f44dd9
Hawley, J. A., Burke, L. M., Phillips, S. M., & Spriet, L. L. (2011). Nutritional modulation of training-induced skeletal muscle adaptations. J Appl Physiol, 110(3), 834-845. doi:10.1152/japplphysiol.00949.2010
Hawley, J. A., Tipton, K. D., & Millard-Stafford, M. L. (2006). Promoting training adaptations through nutritional interventions. J Sports Sci, 24(7), 709-721. doi:10.1080/02640410500482727
Hulston, C. J., Venables, M. C., Mann, C. H., Martin, C., Philp, A., Baar, K., & Jeukendrup, A. E. (2010). Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Med Sci Sports Exerc, 42(11), 2046-2055. doi:10.1249/MSS.0b013e3181dd5070
Hultman, E., & Bergstrom, J. (1967). Muscle glycogen synthesis in relation to diet studied in normal subjects. Acta Med Scand, 182(1), 109-117.
Hultman, E., Bergström, J., & Roch-Norlund, A. E. (1971). Glycogen Storage in Human Skeletal Muscle. In B. Pernow & B. Saltin (Eds.), Muscle Metabolism During Exercise (Vol. 11, pp. 273-288): Springer US.
Jequier, E., & Tappy, L. (1999). Regulation of body weight in humans. Physiol Rev, 79(2), 451-480.
Jump, D. B., & Clarke, S. D. (1999). Regulation of gene expression by dietary fat. Annu Rev Nutr, 19, 63-90. doi:10.1146/annurev.nutr.19.1.63
Kelly, M., Keller, C., Avilucea, P. R., Keller, P., Luo, Z., Xiang, X., Ruderman, N. B. (2004). AMPK activity is diminished in tissues of IL-6 knockout mice: the effect of exercise. Biochem Biophys Res Commun, 320(2), 449-454. doi:10.1016/j.bbrc.2004.05.188
Kirwan, J. P., & Jing, M. (2002). Modulation of insulin signaling in human skeletal muscle in response to exercise. Exerc Sport Sci Rev, 30(2), 85-90.
Lavin, J. H., Wittert, G., Sun, W. M., Horowitz, M., Morley, J. E., & Read, N. W. (1996). Appetite regulation by carbohydrate: role of blood glucose and gastrointestinal hormones. Am J Physiol, 271(2 Pt 1), E209-214.
Lee-Young, R. S., Palmer, M. J., Linden, K. C., LePlastrier, K., Canny, B. J., Hargreaves, M., McConell, G. K. (2006). Carbohydrate ingestion does not alter skeletal muscle AMPK signaling during exercise in humans. Am J Physiol Endocrinol Metab, 291(3), E566-573. doi:10.1152/ajpendo.00023.2006
Low, S. Y., Rennie, M. J., & Taylor, P. M. (1996). Modulation of glycogen synthesis in rat skeletal muscle by changes in cell volume. J Physiol, 495 ( Pt 2), 299-303.
McBride, A., Ghilagaber, S., Nikolaev, A., & Hardie, D. G. (2009). The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor. Cell Metab, 9(1), 23-34. doi:10.1016/j.cmet.2008.11.008
Mikulski, T., Ziemba, A., & Nazar, K. (2008). Influence of body carbohydrate store modification on catecholamine and lactate responses to graded exercise in sedentary and physically active subjects. J Physiol Pharmacol, 59(3), 603-616.
Philp, A., Burke, L. M., & Baar, K. (2011). Altering endogenous carbohydrate availability to support training adaptations. Nestle Nutr Inst Workshop Ser, 69, 19-31.
Philp, A., Hargreaves, M., & Baar, K. (2012). More than a store: Regulatory roles for glycogen in skeletal muscle adaptation to exercise. Am J Physiol Endocrinol Metab. doi:10.1152/ajpendo.00004.2012
Pilegaard, H., Keller, C., Steensberg, A., Helge, J. W., Pedersen, B. K., Saltin, B., & Neufer, P. D. (2002). Influence of pre-exercise muscle glycogen content on exercise-induced transcriptional regulation of metabolic genes. J Physiol, 541(Pt 1), 261-271. doi:10.1113/jphysiol.2002.016832
Podolin, D. A., Munger, P. A., & Mazzeo, R. S. (1991). Plasma catecholamine and lactate response during graded exercise with varied glycogen conditions. J Appl Physiol, 71(4), 1427-1433.
Printen, J. A., Brady, M. J., & Saltiel, A. R. (1997). PTG, a protein phosphatase 1-binding protein with a role in glycogen metabolism. Science, 275(5305), 1475-1478. doi:10.1126/science.275.5305.1475
Sheikh-Hamad, D., & Gustin, M. C. (2004). MAP kinases and the adaptive response to hypertonicity: functional preservation from yeast to mammals. Am J Physiol Renal Physiol, 287(6), F1102-1110. doi:10.1152/ajprenal.00225.2004
Spriet, L. L., & Peters, S. J. (1998). Influence of diet on the metabolic responses to exercise. Proc Nutr Soc, 57(1), 25-33.
Stapleton, D., Nelson, C., Parsawar, K., McClain, D., Gilbert-Wilson, R., Barker, E., Parker, G. (2010). Analysis of hepatic glycogen-associated proteins. Proteomics, 10(12), 2320-2329. doi:10.1002/pmic.200900628
Steensberg, A., van Hall, G., Keller, C., Osada, T., Schjerling, P., Pedersen, B. K., Febbraio, M. A. (2002). Muscle glycogen content and glucose uptake during exercise in humans: influence of prior exercise and dietary manipulation. J Physiol, 541(Pt 1), 273-281. doi:10.1113/jphysiol.2001.015594
Steinacker, J. M., Lormes, W., Reissnecker, S., & Liu, Y. (2004). New aspects of the hormone and cytokine response to training. Eur J Appl Physiol, 91(4), 382-391. doi:10.1007/s00421-003-0960-x
Stellingwerff, T., Boit, M. K., & Res, P. T. (2007). Nutritional strategies to optimize training and racing in middle-distance athletes. J Sports Sci, 25 Suppl 1, S17-28. doi:10.1080/02640410701607213
Thomas, C. D., Peters, J. C., Reed, G. W., Abumrad, N. N., Sun, M., & Hill, J. O. (1992). Nutrient balance and energy expenditure during ad libitum feeding of high-fat and high-carbohydrate diets in humans. Am J Clin Nutr, 55(5), 934-942.
Towler, M. C., & Hardie, D. G. (2007). AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res, 100(3), 328-341. doi:10.1161/01.res.0000256090.42690.05
Tremblay, A., Lavallee, N., Almeras, N., Allard, L., Despres, J. P., & Bouchard, C. (1991). Nutritional determinants of the increase in energy intake associated with a high-fat diet. Am J Clin Nutr, 53(5), 1134-1137.
Watt, M. J., & Hargreaves, M. (2002). Effect of epinephrine on glucose disposal during exercise in humans: role of muscle glycogen. Am J Physiol Endocrinol Metab, 283(3), E578-583.
Weltan, S. M., Bosch, A. N., Dennis, S. C., & Noakes, T. D. (1998). Preexercise muscle glycogen content affects metabolism during exercise despite maintenance of hyperglycemia. Am J Physiol, 274(1 Pt 1), E83-88.
Widegren, U., Jiang, X. J., Krook, A., Chibalin, A. V., Bjornholm, M., Tally, M., Zierath, J. R. (1998). Divergent effects of exercise on metabolic and mitogenic signaling pathways in human skeletal muscle. FASEB J, 12(13), 1379-1389.
Yeo, W. K., McGee, S. L., Carey, A. L., Paton, C. D., Garnham, A. P., Hargreaves, M., & Hawley, J. A. (2010). Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen. Exp Physiol, 95(2), 351-358. doi:10.1113/expphysiol.2009.049353
Yeo, W. K., Paton, C. D., Garnham, A. P., Burke, L. M., Carey, A. L., & Hawley, J. A. (2008). Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol, 105(5), 1462-1470. doi:10.1152/japplphysiol.90882.2008