Research Article
BibTex RIS Cite

Egzersizler sırasında enerji tüketiminin hesaplanmasında yaygın olarak kullanılan endirekt yöntemlerin karşılaştırılması

Year 2018, Volume: 29 Issue: 4, 178 - 186, 26.02.2019
https://doi.org/10.17644/sbd.406427

Abstract

Bu
çalışmanın amacı, Dünya Sağlık Örgütü (
World Health Organization; WHO) ve Amerikan Spor Hekimliği
Koleji (
American
College of Sports Medicine
; ACSM) tarafından önerilen formüle
dayalı pratik enerji tüketimi hesaplamalarının istirahat metabolizma hızı ve
egzersize ait sonuçlarını solunumsal parametrelerle elde edilen enerji tüketimi
düzeyleriyle karşılaştırmaktı. Çalışmaya 23,94±6,70 yaş ortalamasına sahip 35
sedanter kadın gönüllü katıldı (Boy:166,66±6,10 cm; VK: 66,77±11,64 kg; VKİ:
23,97±3,4). İstirahat analizlerinin ardından tüm gurup vücut kütle indekslerine
göre normal (n=20) ve fazla kilolular (n=15) olmak üzere ikiye ayrıldı (VKİ
sırasıyla 21,41±1,53 ve 27,39±1,76). Her katılımcı için istirahat ve 30
dakikalık 8 MET’lik egzersize ait toplam enerji tüketimi düzeyleri; hem VO2
yanıtları, solunum değişim oranına ait enerji eşitliği ve zaman üzerinden, hem
de WHO ve ACSM eşitlikleri kullanılarak hesaplandı. İkili karşılaştırmalarda
ilişkili guruplar t-testi kullanıldı. Yalnızca fazla kilolu kadınlarda ACSM (1928,64±256,61
kal) eşitliğiyle tahmin edilen istirahat metabolizma hızlarıyla solunumsal
parametrelere dayalı olarak hesaplanan değerler (1868,99±223,17 kal) arasındaki
farklar anlamlı değildi (p=0,342). Normal kilolu kadınlarda WHO ve ACSM
eşitlikleriyle hesaplanan istirahat metabolizma hızı değerleri, laboratuvar
ölçümlerine kıyasla oldukça düşük sonuçlar verdi (p=0.001). 30 dakikalık
egzersizlere ait toplam enerji tüketimi düzeyleri adına ne WHO ne de ACSM
eşitlikleriyle hesaplanan değerler, ne normal ne de fazla kilolu kadınlar için
toplam enerji tüketimlerini doğru tahmin edemedi (p≤0,019). Çalışmanın
sonuçlarına göre, fazla kilolu kadınların istirahat metabolizma hızlarını
değerlendirmede 
[(MET*3,5*VK (kg))/1000]*5*t(dk) eşitliğinin kullanılabileceği, ancak
egzersizlere ait enerji tüketimi düzeylerinin belirlenmesinde solunumsal
parametrelere dayalı analizlerin yapılmasının zaruri olduğu değerlendirildi.

References

  • 1. Ainsworth BE, Haskell WL, Leon AS, Jacobs JD, Montoye HJ, Sallis JF ve diğ. (1993). Compendium of physical activities: classification of energy costs of human physical activities. Medicine and science in sports and exercise, 25(1), 71-80.
  • 2. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ ve diğ. (2000). Compendium of physical activities: an update of activity codes and MET intensities. Medicine and science in sports and exercise, 32(9; SUPP/1), S498-S504.
  • 3. American College of Sports Medicine (Ed.). (2013). ACSM's health-related physical fitness assessment manual. Lippincott Williams & Wilkins.
  • 4. Buttussi, F, Chittaro, L. (2008). MOPET: A context-aware and user-adaptive wearable system for fitness training. Artificial Intelligence in Medicine, 42(2), 153-163.
  • 5. Byrne NM, Hills AP, Hunter GR, Weinsier RL, Schutz Y. (2005). Metabolic equivalent: one size does not fit all. Journal of Applied physiology, 99(3), 1112-1119.
  • 6. Church TS, Earnest CP, Skinner JS, Blair SN. (2007). Effects of different doses of physical activity on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women with elevated blood pressure: a randomized controlled trial. Jama, 297(19), 2081-2091.
  • 7. Gaesser GA, Poole DC (1996). The slow component of oxygen uptake kinetics in humans. Exercise and sport sciences reviews, 24(1), 35-70.
  • 8. Gagge AP, Burton AC, Bazett HC. (1941). A practical system of units for the description of the heat exchange of man with his environment. Science, 94(2445), 428-430.
  • 9. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte, MJ, Lee IM ve diğ. (2011). American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Medicine and science in sports and exercise, 43(7), 1334-1359.
  • 10. Gunn SM, Brooks AG, Withers RT, Gore CJ, Owen N, Booth ML ve diğ. (2002). Determining energy expenditure during some household and garden tasks. Medicine and science in sports and exercise, 34(5), 895-902.
  • 11. Gunn SM, Ploeg GE, Withers RT, Gore CJ, Owen N, Bauman AE ve diğ. (2004). Measurement and prediction of energy expenditure in males during household and garden tasks. European journal of applied physiology, 91(1), 61-70.
  • 12. Howell W, Earthman C, Reid P, Greaves K, Delany J, Houtkooper L. (1999). Doubly labeled water validation of the Compendium of Physical Activities in lean and obese college women. Medicine & Science in Sports & Exercise, 31(5), S142.
  • 13. Howley ET. (2000). You asked for it Question Authority. ACSM's Health & Fitness Journal, 4(4), 6-18.
  • 14. Howley ET. (2001). Type of activity: resistance, aerobic and leisure versus occupational physical activity. Medicine & Science in Sports & Exercise, 33(6), S364-S369.
  • 15. Jette M, Sidney K, Blümchen G. (1990). Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clinical cardiology, 13(8), 555-565.
  • 16. Oosthuyse T, Bosch AN, Jackson S. (2005). Cycling time trial performance during different phases of the menstrual cycle. European journal of applied physiology, 94(3), 268-276.
  • 17. Ozkaya O, Colakoglu M, Kuzucu EO, Delextrat A. (2014). An elliptical trainer may render the Wingate all-out test more anaerobic. The Journal of Strength & Conditioning Research, 28(3), 643-650.
  • 18. Peronnet F, Massicotte D. (1991). Table of nonprotein respiratory quotient: an update. Can J Sport Sci, 16(1), 23-29.
  • 19. Poole DC, Ward SA, Gardner GW, Whipp BJ. (1988). Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics, 31(9), 1265-1279.
  • 20. Racette SB, Schoeller DA, Kushner RF. (1995). Comparison of heart rate and physical activity recall with doubly labeled water in obese women. Medicine and science in sports and exercise, 27(1), 126-133.
  • 21. Schmitz MKH. (1998). Interactive and Independent Associations of Physical Activity, Body Weight, and Blood Lipid Levels. University of Minnesota.
  • 22. Schofield WN. (1985). Predicting basal metabolic rate, new standards and review of previous work. Human nutrition. Clinical nutrition, 39, 5-41.
  • 23. Shephard RJ. (2001). Absolute versus relative intensity of physical activity in a dose-response context. Medicine and science in sports and exercise, 33(6 Suppl), S400-18.
  • 24. Swain DP. (2000). Energy cost calculations for exercise prescription. Sports Medicine, 30(1), 17-22.
  • 23. Swinburn BA, Sacks G, Hall KD., McPherson K, Finegood DT, Moodie ML ve diğ. (2011). The global obesity pandemic: shaped by global drivers and local environments. The Lancet, 378(9793), 804-814.
  • 24. Wasserman K, Hansen JE, Sue DY, Whipp BJ, Casaburi R. (1994) Measurements during integrative cardiopulmonary exercise testing. In: Principles of Exercise Testing and Interpretation (2nd ed.). Philadephia, PA: Lea & Febiger, 59-60.
  • 25. World Health Organization. (2013). Global Physical Activity Questionnaire (GPAQ) Analysis Guide. 2011. Geneva: World Health Organization.
Year 2018, Volume: 29 Issue: 4, 178 - 186, 26.02.2019
https://doi.org/10.17644/sbd.406427

Abstract

References

  • 1. Ainsworth BE, Haskell WL, Leon AS, Jacobs JD, Montoye HJ, Sallis JF ve diğ. (1993). Compendium of physical activities: classification of energy costs of human physical activities. Medicine and science in sports and exercise, 25(1), 71-80.
  • 2. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ ve diğ. (2000). Compendium of physical activities: an update of activity codes and MET intensities. Medicine and science in sports and exercise, 32(9; SUPP/1), S498-S504.
  • 3. American College of Sports Medicine (Ed.). (2013). ACSM's health-related physical fitness assessment manual. Lippincott Williams & Wilkins.
  • 4. Buttussi, F, Chittaro, L. (2008). MOPET: A context-aware and user-adaptive wearable system for fitness training. Artificial Intelligence in Medicine, 42(2), 153-163.
  • 5. Byrne NM, Hills AP, Hunter GR, Weinsier RL, Schutz Y. (2005). Metabolic equivalent: one size does not fit all. Journal of Applied physiology, 99(3), 1112-1119.
  • 6. Church TS, Earnest CP, Skinner JS, Blair SN. (2007). Effects of different doses of physical activity on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women with elevated blood pressure: a randomized controlled trial. Jama, 297(19), 2081-2091.
  • 7. Gaesser GA, Poole DC (1996). The slow component of oxygen uptake kinetics in humans. Exercise and sport sciences reviews, 24(1), 35-70.
  • 8. Gagge AP, Burton AC, Bazett HC. (1941). A practical system of units for the description of the heat exchange of man with his environment. Science, 94(2445), 428-430.
  • 9. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte, MJ, Lee IM ve diğ. (2011). American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Medicine and science in sports and exercise, 43(7), 1334-1359.
  • 10. Gunn SM, Brooks AG, Withers RT, Gore CJ, Owen N, Booth ML ve diğ. (2002). Determining energy expenditure during some household and garden tasks. Medicine and science in sports and exercise, 34(5), 895-902.
  • 11. Gunn SM, Ploeg GE, Withers RT, Gore CJ, Owen N, Bauman AE ve diğ. (2004). Measurement and prediction of energy expenditure in males during household and garden tasks. European journal of applied physiology, 91(1), 61-70.
  • 12. Howell W, Earthman C, Reid P, Greaves K, Delany J, Houtkooper L. (1999). Doubly labeled water validation of the Compendium of Physical Activities in lean and obese college women. Medicine & Science in Sports & Exercise, 31(5), S142.
  • 13. Howley ET. (2000). You asked for it Question Authority. ACSM's Health & Fitness Journal, 4(4), 6-18.
  • 14. Howley ET. (2001). Type of activity: resistance, aerobic and leisure versus occupational physical activity. Medicine & Science in Sports & Exercise, 33(6), S364-S369.
  • 15. Jette M, Sidney K, Blümchen G. (1990). Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clinical cardiology, 13(8), 555-565.
  • 16. Oosthuyse T, Bosch AN, Jackson S. (2005). Cycling time trial performance during different phases of the menstrual cycle. European journal of applied physiology, 94(3), 268-276.
  • 17. Ozkaya O, Colakoglu M, Kuzucu EO, Delextrat A. (2014). An elliptical trainer may render the Wingate all-out test more anaerobic. The Journal of Strength & Conditioning Research, 28(3), 643-650.
  • 18. Peronnet F, Massicotte D. (1991). Table of nonprotein respiratory quotient: an update. Can J Sport Sci, 16(1), 23-29.
  • 19. Poole DC, Ward SA, Gardner GW, Whipp BJ. (1988). Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics, 31(9), 1265-1279.
  • 20. Racette SB, Schoeller DA, Kushner RF. (1995). Comparison of heart rate and physical activity recall with doubly labeled water in obese women. Medicine and science in sports and exercise, 27(1), 126-133.
  • 21. Schmitz MKH. (1998). Interactive and Independent Associations of Physical Activity, Body Weight, and Blood Lipid Levels. University of Minnesota.
  • 22. Schofield WN. (1985). Predicting basal metabolic rate, new standards and review of previous work. Human nutrition. Clinical nutrition, 39, 5-41.
  • 23. Shephard RJ. (2001). Absolute versus relative intensity of physical activity in a dose-response context. Medicine and science in sports and exercise, 33(6 Suppl), S400-18.
  • 24. Swain DP. (2000). Energy cost calculations for exercise prescription. Sports Medicine, 30(1), 17-22.
  • 23. Swinburn BA, Sacks G, Hall KD., McPherson K, Finegood DT, Moodie ML ve diğ. (2011). The global obesity pandemic: shaped by global drivers and local environments. The Lancet, 378(9793), 804-814.
  • 24. Wasserman K, Hansen JE, Sue DY, Whipp BJ, Casaburi R. (1994) Measurements during integrative cardiopulmonary exercise testing. In: Principles of Exercise Testing and Interpretation (2nd ed.). Philadephia, PA: Lea & Febiger, 59-60.
  • 25. World Health Organization. (2013). Global Physical Activity Questionnaire (GPAQ) Analysis Guide. 2011. Geneva: World Health Organization.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Sports Medicine
Journal Section Articles
Authors

Hakan As This is me

Özgür Özkaya

Görkem Aybars Balcı This is me

Ali Güreş This is me

Bekir Muzaffer Çolakoğlu

Publication Date February 26, 2019
Submission Date March 15, 2018
Published in Issue Year 2018 Volume: 29 Issue: 4

Cite

APA As, H., Özkaya, Ö., Balcı, G. A., Güreş, A., et al. (2019). Egzersizler sırasında enerji tüketiminin hesaplanmasında yaygın olarak kullanılan endirekt yöntemlerin karşılaştırılması. Spor Bilimleri Dergisi, 29(4), 178-186. https://doi.org/10.17644/sbd.406427

26830


HACETTEPE JOURNAL OF SPORT SCIENCES


Copyright © Hacettepe University Faculty of Sport Sciences