Research Article
BibTex RIS Cite

Krom (Cr+6)'a Maruz Bırakılmış Ceratophyllum demersum L.' un Biyolojik Cevabı

Year 2010, Volume: 5 Issue: 2, 163 - 171, 11.11.2010

Abstract

Krom (Cr), endüstrideki yaygın kullanımı nedeniyle ciddi bir kirletici durumuna gelmiştir. Özellikle Cr+6 formunun Cr+3 formundan daha toksik olarak değerlendirilmektedir. Bu çalışmada, sucul bir bitki olan Ceratophyllum demersum L.'nin Cr+6' ya karşı oluşturduğu biyolojik cevabın incelenmesi amaçlanmıştır. C. demersum örnekleri 6 gün boyunca 1, 5 ve 10 mM Cr (K2Cr2O7)'a maruz bırakılmıştır. Cr akümülasyonu, bitki büyümesi, lipit peroksidasyonu, iyon kaçışı, fotosentetik pigmentasyon, protein ve prolin içeriğinin konsantrasyona bağlı değişimleri incelenmiştir. C. demersum'un önemli miktarda Cr'u akümüle edebildiği belirlenmiştir. En yüksek Cr konsantrasyonu, 10 mM Cr uygulamasında 19.6 mmol g-1 (kuru ağırlık) olarak bulunmuştur. Genel olarak, Cr akümülasyonuna karşı C. demersum büyüme oranı ve fotosentetik pigmentasyonda azalma; iyon kaçışı, lipit peroksidasyonunda ise artış ile cevap vermiştir. Bu çalışmadan elde edilen bulgular, sucul bitkiler kullanılarak kirletilmiş suların arıtımı çalışmaları için faydalı olabilir.

Anahtar kelimeler: Ceratophyllum demersum, krom, büyüme oranı, lipid peroksidasyonu

Biological Responses of Ceratophyllum demersum L. Exposed to Chromium (Cr+6)

Due to its widespread industrial use, chromium (Cr) has become a serious pollutant. In particular, the hexavalent form of the metal, Cr+6, is considered a more toxic species than the Cr+3 form. The objective of the present study is to investigate biological responses of Ceratophyllum demersum L., which is an aquatic plant, against chromium exposure. C. demersum samples were exposed to 1, 5, and 10 mM of Cr (K2Cr2O7) for 6 days. The accumulation of Cr, plant growth, lipid peroxidation, ion leakage, photosynthetic pigmentation, protein and proline content was examined depending on concentration changes. It was determined that C. demersum could accumulate considerable amounts of Cr. The highest Cr accumulation value was observed as 19.6 mmol g-1 (dry weight) at 10 mM Cr application. In general, growth rate and photosynthetic pigmentation decreased as a response to Cr accumulation whereas ion leakage, lipid peroxidation increased. The findings of the present study may be useful for phytoremediation of polluted water using aquatic plants.

Key words: Ceratophyllum demersum, chromium, growth rate, lipid peroxidation

References

  • Maine M.A, Suñé N.L., Lagger, S.C., 2004. Chromium bioaccumulation: comparison of the capacity of two floating aquatic macrophytes, Water Research, 38: 1494-1501.
  • Paiva L.B., Jurandi O.G., Azevedo R.A., Ribeiro D.R., Silva M.G., Vitória A.P., 2009. Ecophysiological responses of water hyacinth exposed to Cr3+ and Cr6+, Environmental and Experimental Botany, 65: 403-409.
  • Vajpayee P, Tripathi R.D., Rai U.N., Ali M.B., Singh S.N., 2000. Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L, Chemosphere, 41: 1075–1082.
  • Ganesh K.S., Baskaran L., Rajasekaran S., Sumathi K., Chidambaram A.L.A., Sundaramoorthy P., 2008. Chromium stress induced alterations in biochemical and enzyme metabolism in aquatic and terrestrial plants, Colloids and Surfaces B: Biointerfaces, 63: 159-163.
  • Dazy M., Béraud E., Cotelle S., Meux E., 2008. Antioxidant enzyme activities as affected by trivalent and hexavalent chromium species in Fontinalis antipyretica Hedw. Chemosphere, 73: 281-290.
  • Dhir B., Sharmila P., Saradhi P.P., Nasim S.A., 2009. Physiological and antioxidant responses of Salvinia natans exposed to chromium-rich wastewater, Ecotoxicology and Environmental Safety, 72: 1790-1797.
  • Meharg A.A., 1994. Integrated tolerance mechanisms-constitutive and adaptive plant-responses to elevated metal concentrations in the environment. Plant, Cell & Environment, 17: 989–993.
  • Baker A.J.M., McGrath S.P., Reeves R.S., Smith J.A.C., 1998. Metal hyperaccumulator plant: a review of the ecology and physiology of a biological resource for phytoremediation of metal- polluted soils. In: Terry, N. and Bannelos, G.N. (eds.), Phytoremediation of Contaminated Soil and Water, pp. 85–107. Lewis Publ., FL, USA.
  • Mishra V.K., Tripathi B.D., 2009. Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes), Journal of Hazardous Materials, 164: 1059-1063.
  • Choo T.P., Lee C.K., Low K.S., Hishamuddin O., 2006. Accumulation of chromium (VI) from aqueous solutions using water lilies (Nymphaea spontanea), Chemosphere, 62: 961-967.
  • Augustynowicz J., Grosicki M., Hanus-Fajerska E., Lekka M., Waloszek A., Kołoczek H., 2010. Chromium(VI) bioremediation by aquatic macrophyte Callitriche cophocarpa Sendtn, Chemosphere, 79: 1077-1083.
  • Marches M., Gagneten A.M., Parma M.J., Pave P.J., 2008. Accumulation and elimination of chromium by freshwater species exposed to spiked sediments, Archives of Environmental Contamination Toxicology, 55: 603–609.
  • Hou W., Chen X., Song G., Wang Q., Chang C.C., 2007. Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor), Plant Physiolology and Biochemistry, 45: 62-69.
  • Srivastava S., Mishra S., Tripathi R.D., Dwivedi S., Gupta D.K., 2006. Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f.) Royle, Aquatic Toxicology, 80: 405-415.
  • Cedergreen N., 2008. Is the growth stimulation by low doses of glyphosate sustained over time, Environmental Pollution, 156 :1099–1104.
  • Devi S.R., Prasad, M.N.V., 1998. Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: response of antioxidant enzymes and antioxidants, Plant Science, 13: 157– 165.
  • Heath R.L., Packer L., 1968. Photoperoxidation in isolated chloroplasts l. Kinetics and stoichiometry of fatty acid peroxidation, Archives of Biochemistry and Biophysics, 125: 189–198.
  • Lowry O.H., Roenbrough N.J., Farr A.L., Randal E.J., 1951. Protein measurement with the folin phenol reagent, Journal of Biological Chemistry, 193: 265–275.
  • Arnon D.I., 1949. Copper enzyme in isolated chloroplast polyphenol oxidase in Beta vulgaris, Plant Physiology, 24: 1–15.
  • Duxbury A.C., Yentsch C.S., 1956. Plantkton pigment monograph, Journal of Marine Resource, 15: 93–101.
  • Bates L.S., 1973. Rapid determination of free proline for water-stress studies, Plant Soil, 39: 205– 207.
  • Zayed A., Terry N., 2003. Chromium in the environment: factors affecting biological remediation, Plant Soil, 249: 139–156.
  • Gikas P., Romanos P., 2006. Effects of trivalent Cr(III) and hexavalente Cr(VI) chromium on the growth of activated sludge, Journal of Hazardous Material, 133: 212–217.
  • Vajpayee P., Rai U.N., Ali M.B., Tripathi R.D., Yadav V., Sinha S., Singh S.N., 2001. Chromium induced physiologic changes in Vallisneria spiralis L. and its role in phytoremediation of tannery effluent, Bulletin of Environmental Contamination and Toxicology, 67: 246–256.
  • Palma J.M., Sandalio L.M., Corpas F.J., Romero-Puertas M.C., MaCarthy I., del Rio L.A., 2002. Plant proteases, protein degradation and oxidative stress: role of peroxisomes, Plant Physiology and Biochemistry, 40: 521–530.
  • Gallego S.M., Benavides M.P., Tomaro M.L., 1996. Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stres, Plant Science, 121: 151–159.
  • Sinha S., Saxena R., Singh S., 2005. Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: role of antioxidants and antioxidant enzymes, Chemosphere, 58: 595-604
  • Jana S., Choudhuri M.A., 1992. Senescence in submerged aquatic angiosperms: effects of heavy metals, New Phytologist, 90: 477–484.
  • Davies K.J.A., 1987. Protein damage and degradation by oxygen radicals. I. General aspects, Journal of Biological Chemistry, 262: 9895–9901.
  • Sinha S., Gupta A.K., 2005. Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: Effect on antioxidants, Chemosphere, 61: 1204-1214.
  • Serkan Şahan e-posta: sahans@erciyes.edu.tr
  • Ahmet Ceylan e-posta: aceylan@erciyes.edu.tr
  • Fatih Doğan Koca e-posta: zambak_038@hotmail.com
Year 2010, Volume: 5 Issue: 2, 163 - 171, 11.11.2010

Abstract

References

  • Maine M.A, Suñé N.L., Lagger, S.C., 2004. Chromium bioaccumulation: comparison of the capacity of two floating aquatic macrophytes, Water Research, 38: 1494-1501.
  • Paiva L.B., Jurandi O.G., Azevedo R.A., Ribeiro D.R., Silva M.G., Vitória A.P., 2009. Ecophysiological responses of water hyacinth exposed to Cr3+ and Cr6+, Environmental and Experimental Botany, 65: 403-409.
  • Vajpayee P, Tripathi R.D., Rai U.N., Ali M.B., Singh S.N., 2000. Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L, Chemosphere, 41: 1075–1082.
  • Ganesh K.S., Baskaran L., Rajasekaran S., Sumathi K., Chidambaram A.L.A., Sundaramoorthy P., 2008. Chromium stress induced alterations in biochemical and enzyme metabolism in aquatic and terrestrial plants, Colloids and Surfaces B: Biointerfaces, 63: 159-163.
  • Dazy M., Béraud E., Cotelle S., Meux E., 2008. Antioxidant enzyme activities as affected by trivalent and hexavalent chromium species in Fontinalis antipyretica Hedw. Chemosphere, 73: 281-290.
  • Dhir B., Sharmila P., Saradhi P.P., Nasim S.A., 2009. Physiological and antioxidant responses of Salvinia natans exposed to chromium-rich wastewater, Ecotoxicology and Environmental Safety, 72: 1790-1797.
  • Meharg A.A., 1994. Integrated tolerance mechanisms-constitutive and adaptive plant-responses to elevated metal concentrations in the environment. Plant, Cell & Environment, 17: 989–993.
  • Baker A.J.M., McGrath S.P., Reeves R.S., Smith J.A.C., 1998. Metal hyperaccumulator plant: a review of the ecology and physiology of a biological resource for phytoremediation of metal- polluted soils. In: Terry, N. and Bannelos, G.N. (eds.), Phytoremediation of Contaminated Soil and Water, pp. 85–107. Lewis Publ., FL, USA.
  • Mishra V.K., Tripathi B.D., 2009. Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes), Journal of Hazardous Materials, 164: 1059-1063.
  • Choo T.P., Lee C.K., Low K.S., Hishamuddin O., 2006. Accumulation of chromium (VI) from aqueous solutions using water lilies (Nymphaea spontanea), Chemosphere, 62: 961-967.
  • Augustynowicz J., Grosicki M., Hanus-Fajerska E., Lekka M., Waloszek A., Kołoczek H., 2010. Chromium(VI) bioremediation by aquatic macrophyte Callitriche cophocarpa Sendtn, Chemosphere, 79: 1077-1083.
  • Marches M., Gagneten A.M., Parma M.J., Pave P.J., 2008. Accumulation and elimination of chromium by freshwater species exposed to spiked sediments, Archives of Environmental Contamination Toxicology, 55: 603–609.
  • Hou W., Chen X., Song G., Wang Q., Chang C.C., 2007. Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor), Plant Physiolology and Biochemistry, 45: 62-69.
  • Srivastava S., Mishra S., Tripathi R.D., Dwivedi S., Gupta D.K., 2006. Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f.) Royle, Aquatic Toxicology, 80: 405-415.
  • Cedergreen N., 2008. Is the growth stimulation by low doses of glyphosate sustained over time, Environmental Pollution, 156 :1099–1104.
  • Devi S.R., Prasad, M.N.V., 1998. Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: response of antioxidant enzymes and antioxidants, Plant Science, 13: 157– 165.
  • Heath R.L., Packer L., 1968. Photoperoxidation in isolated chloroplasts l. Kinetics and stoichiometry of fatty acid peroxidation, Archives of Biochemistry and Biophysics, 125: 189–198.
  • Lowry O.H., Roenbrough N.J., Farr A.L., Randal E.J., 1951. Protein measurement with the folin phenol reagent, Journal of Biological Chemistry, 193: 265–275.
  • Arnon D.I., 1949. Copper enzyme in isolated chloroplast polyphenol oxidase in Beta vulgaris, Plant Physiology, 24: 1–15.
  • Duxbury A.C., Yentsch C.S., 1956. Plantkton pigment monograph, Journal of Marine Resource, 15: 93–101.
  • Bates L.S., 1973. Rapid determination of free proline for water-stress studies, Plant Soil, 39: 205– 207.
  • Zayed A., Terry N., 2003. Chromium in the environment: factors affecting biological remediation, Plant Soil, 249: 139–156.
  • Gikas P., Romanos P., 2006. Effects of trivalent Cr(III) and hexavalente Cr(VI) chromium on the growth of activated sludge, Journal of Hazardous Material, 133: 212–217.
  • Vajpayee P., Rai U.N., Ali M.B., Tripathi R.D., Yadav V., Sinha S., Singh S.N., 2001. Chromium induced physiologic changes in Vallisneria spiralis L. and its role in phytoremediation of tannery effluent, Bulletin of Environmental Contamination and Toxicology, 67: 246–256.
  • Palma J.M., Sandalio L.M., Corpas F.J., Romero-Puertas M.C., MaCarthy I., del Rio L.A., 2002. Plant proteases, protein degradation and oxidative stress: role of peroxisomes, Plant Physiology and Biochemistry, 40: 521–530.
  • Gallego S.M., Benavides M.P., Tomaro M.L., 1996. Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stres, Plant Science, 121: 151–159.
  • Sinha S., Saxena R., Singh S., 2005. Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: role of antioxidants and antioxidant enzymes, Chemosphere, 58: 595-604
  • Jana S., Choudhuri M.A., 1992. Senescence in submerged aquatic angiosperms: effects of heavy metals, New Phytologist, 90: 477–484.
  • Davies K.J.A., 1987. Protein damage and degradation by oxygen radicals. I. General aspects, Journal of Biological Chemistry, 262: 9895–9901.
  • Sinha S., Gupta A.K., 2005. Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: Effect on antioxidants, Chemosphere, 61: 1204-1214.
  • Serkan Şahan e-posta: sahans@erciyes.edu.tr
  • Ahmet Ceylan e-posta: aceylan@erciyes.edu.tr
  • Fatih Doğan Koca e-posta: zambak_038@hotmail.com
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology, Chemical Engineering
Journal Section Makaleler
Authors

Fatih Duman

Serkan Şahan This is me

Ahmet Ceylan

Fatih Koca This is me

Publication Date November 11, 2010
Published in Issue Year 2010 Volume: 5 Issue: 2

Cite

IEEE F. Duman, S. Şahan, A. Ceylan, and F. Koca, “Krom (Cr+6)’a Maruz Bırakılmış Ceratophyllum demersum L.’ un Biyolojik Cevabı”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 5, no. 2, pp. 163–171, 2010.