Research Article
BibTex RIS Cite

The Effect of Respiratory on Dose Distributions in Radiotherapy of Lung Cancer: A Phantom Study

Year 2016, Volume: 11 Issue: 1, 51 - 60, 24.05.2016

Abstract

Internal organ motions are one of the most significant obstacles for radiotherapy, especially in the case of motions caused by respiratory during the lung irradiation. There is no any consensus about the margin limit given for the target volume (Clinical Target Volume-CTV, Planning Target Volume- PTV etc.), especially for tumors located moving organs such as lung. Besides, as far as we know, there is no any systematic phantom study showed the effects of respiratory motions on radiotherapy doses depending on PTV margins in the literature. In present study, our aim was to determine the success degree of enlarging the PTV margins on radiotherapy doses during the moving organ irradiations. The study was performed by using GaF-Chromic EBT films placed to a thorax phantom. A cylindrical part within the phantom can move on through craniocaudal direction with a range of 3 cm with 5 sec. period during the irradiation. From the profiles which were obtained from 3 cm moving situations for 3D-Conformal Radiotherapy (3D-CRT), Intensity Modulated Radiotherapy (IMRT) and Volumetric Modulated Arc
Therapy (VMAT) with narrow margins, it was observed that PTV cannot get adequate dose. The irradiation was better for CTV with larger margins but there was still inhomogeneity for PTV. As a consequence, enlarging the margins alone is not a sufficient method against the negative effects of organ motions on the radiotherapy doses.

References

  • [1] International Commission on Radiation Units and Measurements, 1999. Precscribing, recording and reporting photon beam therapy. ICRU Report 62.
  • [2] Keall P.J., Mageras G.S., Balter J.M., Emery R.S., Forster K.M., Jiang S.B., et al., 2006. The management of respiratory motion in radiation oncology report of AAPM task group 76, Medical Physics, 33(10): 3874-900.
  • [3] Erridge S.C., Seppenwoolde Y., Muller S.H., van Herk M., De Jaeger K., Belderbos J.S., et al., 2003. Portal imaging to assess set-up errors, tumor motion and tumor shrinkage during conformal radiotherapy of non-small cell lung cancer, Radiotherapy Oncology, 66(1): 75-85.
  • [4] Seppenwoolde Y., Shirato H., Kitamura K., Shimizu S., van Herk M.,Lebesque J.V., et al., 2002. Precise and real- time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy, International Journal of Radiation Oncology, Biology, Physics, 53(4): 822-34.
  • [5] Mori S., Wolfgang J., Lu H., Schneider R., Choi N.C., Chen G.T., 2008. Quantiative assesment of range fluctations in charged particle lung irradiation International Journal of Radiation Oncology, Biology, Physics, 70(1): 253-61.
  • [6] Nioutsikou E., Symonds-Tayler J.R.N., Bedford J.L., Webb S., 2006. Quantifying the effect of respiratory motion on lung tumour dosimetry with the aid of a breathing phantom with deforming lungs, Physics in Medicine and Biology, 51(14): 3359–3374.
  • [7] Schaefer M., Münter M.W., Thilmann C., Sterzing F., Haering P., Combs S.E., et al., 2004. Influence of intra-fractional breathing movement in step-and-shoot IMRT, Physics in Medicine and Biology, 49(12):175–9.
  • [8] Hugo G.D., Agazaryan N., Solberg T.D., 2002. An evaluation of gating window size, delivery method, and composite field dosimetry of respiratory-gated IMRT, Medical Physics, 29(11): 2517–25.
  • [9] Dietrich L., Tucking T., Nill S., Oelfke U., 2005. Compensation for respiratory motion by gated radiotherapy: an experimental study, Physics in Medicine and Biology, 50(10): 2405–14.
  • [10] Jiang S.B., Pope C., Jarrah K.M., Kung J.H., Bortfeld T., Chen G.T.Y., 2003. An experimental investigation on intra-fractional organ motion effects in lung IMRT treatments, Physics in Medicine and Biology, 48 1773–84.
  • [11] Engelsman M., Damen E.M., De Jaeger K., van Ingen K.M., Mijnheer B.J., 2001. The effect of breathing and set-up errors on the cumulative dose to a lung tumor, Radiotherapy and Oncology, 60(1): 95-105.
  • [12] Bert C., Durante M., 2011. Motion in radiotherapy: particle therapy, Physics in Medicine and Biology, 56(16): R113-R144.
  • [13] Boopanthy R., Padmanaban S., Nagarajan V., Sukumaran P., Jeevanandam P., Kumar S., et al., 2010. Effects of organ motion on radiotherapy dose distribution during rapidarc treatment technique, Journal of Medical And Biological Engineering, 30(3): 189-192.
  • [14] Boopanthy R., Nagarajan V., Rajasekaran D., Padmanaban S., Sukumaran P., Sankarrao B.I. et al., 2009. Evaluation of dose difference in the delivered dose due to lung tumor motion in conventional, conformal and IMRT treatment techniques using in-house developed dynamic phantom, Journal of Medical And Biological Engineering, 30 (1): 41-45.

Akciğer Kanseri Radyoterapisinde Solunumun Doz Dağılımlarına Etkisi: Bir Fantom Çalışması

Year 2016, Volume: 11 Issue: 1, 51 - 60, 24.05.2016

Abstract

Organ hareketleri, özellikle akciğer ışınlamaları sırasında nefes alıp vermeden kaynaklanan hareketler, radyoterapi için en önemli zorluklardandır. Özellikle akciğer gibi hareketli organlarda bulunan tümörler için hedef hacme (Clinical Target Volume-CTV, Planning Target Volume- PTV) verilecek marj sınırı hakkında herhangi bir fikir birliği yoktur. Bunun yanında, literatürde solunum hareketlerinin PTV marjlarına bağlı olarak radyoterapi dozlarına etkisini gösteren sistematik bir fontom çalışması bulunmamaktadır. Bu çalışmada amaç, PTV marjlarının genişlemesinin, organ hareketlerinin radyoterapi dozlarına etkileri üzerindeki başarısını ölçmektir. Çalışma GaF-Chromic EBT filmlerin bir göğüs kafesi fantomuna yerleştirilmesiyle gerçekleştirilmiştir. Fantom içerisindeki bir silindirik bölüm ışınlama sırasında 5 saniyelik periyotlarla, 3 cm genlikle ayak-baş doğrultusunda hareket etmektedir. 3 cm genlikli hareketin olduğu durum için alınan profillerden 3 Boyutlu Konformal Radyoterapi (3D-CRT), Yoğunluk Ayarlı Radyoterapi (IMRT), Yoğunluk Ayarlı Arc Tedavi (VMAT) planları dar marjlar için incelendiğinde, PTV’nin yeterli doz alamadığı gözlemlenmiştir. Işınlama CTV için daha geniş marjlarda iyileşmekte, ancak PTV için inhomojenite devam etmektedir. Sonuç olarak, marjların genişletilmesinin organ hareketlerinin radyoterapi dozları üzerindeki olumsuz etkileri için tek başına yeterli olmadığı gözlemlenmiştir. 

References

  • [1] International Commission on Radiation Units and Measurements, 1999. Precscribing, recording and reporting photon beam therapy. ICRU Report 62.
  • [2] Keall P.J., Mageras G.S., Balter J.M., Emery R.S., Forster K.M., Jiang S.B., et al., 2006. The management of respiratory motion in radiation oncology report of AAPM task group 76, Medical Physics, 33(10): 3874-900.
  • [3] Erridge S.C., Seppenwoolde Y., Muller S.H., van Herk M., De Jaeger K., Belderbos J.S., et al., 2003. Portal imaging to assess set-up errors, tumor motion and tumor shrinkage during conformal radiotherapy of non-small cell lung cancer, Radiotherapy Oncology, 66(1): 75-85.
  • [4] Seppenwoolde Y., Shirato H., Kitamura K., Shimizu S., van Herk M.,Lebesque J.V., et al., 2002. Precise and real- time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy, International Journal of Radiation Oncology, Biology, Physics, 53(4): 822-34.
  • [5] Mori S., Wolfgang J., Lu H., Schneider R., Choi N.C., Chen G.T., 2008. Quantiative assesment of range fluctations in charged particle lung irradiation International Journal of Radiation Oncology, Biology, Physics, 70(1): 253-61.
  • [6] Nioutsikou E., Symonds-Tayler J.R.N., Bedford J.L., Webb S., 2006. Quantifying the effect of respiratory motion on lung tumour dosimetry with the aid of a breathing phantom with deforming lungs, Physics in Medicine and Biology, 51(14): 3359–3374.
  • [7] Schaefer M., Münter M.W., Thilmann C., Sterzing F., Haering P., Combs S.E., et al., 2004. Influence of intra-fractional breathing movement in step-and-shoot IMRT, Physics in Medicine and Biology, 49(12):175–9.
  • [8] Hugo G.D., Agazaryan N., Solberg T.D., 2002. An evaluation of gating window size, delivery method, and composite field dosimetry of respiratory-gated IMRT, Medical Physics, 29(11): 2517–25.
  • [9] Dietrich L., Tucking T., Nill S., Oelfke U., 2005. Compensation for respiratory motion by gated radiotherapy: an experimental study, Physics in Medicine and Biology, 50(10): 2405–14.
  • [10] Jiang S.B., Pope C., Jarrah K.M., Kung J.H., Bortfeld T., Chen G.T.Y., 2003. An experimental investigation on intra-fractional organ motion effects in lung IMRT treatments, Physics in Medicine and Biology, 48 1773–84.
  • [11] Engelsman M., Damen E.M., De Jaeger K., van Ingen K.M., Mijnheer B.J., 2001. The effect of breathing and set-up errors on the cumulative dose to a lung tumor, Radiotherapy and Oncology, 60(1): 95-105.
  • [12] Bert C., Durante M., 2011. Motion in radiotherapy: particle therapy, Physics in Medicine and Biology, 56(16): R113-R144.
  • [13] Boopanthy R., Padmanaban S., Nagarajan V., Sukumaran P., Jeevanandam P., Kumar S., et al., 2010. Effects of organ motion on radiotherapy dose distribution during rapidarc treatment technique, Journal of Medical And Biological Engineering, 30(3): 189-192.
  • [14] Boopanthy R., Nagarajan V., Rajasekaran D., Padmanaban S., Sukumaran P., Sankarrao B.I. et al., 2009. Evaluation of dose difference in the delivered dose due to lung tumor motion in conventional, conformal and IMRT treatment techniques using in-house developed dynamic phantom, Journal of Medical And Biological Engineering, 30 (1): 41-45.
There are 14 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Sultan Damgacı This is me

Uğur Akbaş This is me

Canan Köksal This is me

Veli Çapalı

Murat Okutan This is me

Bayram Demir

Publication Date May 24, 2016
Published in Issue Year 2016 Volume: 11 Issue: 1

Cite

IEEE S. Damgacı, U. Akbaş, C. Köksal, V. Çapalı, M. Okutan, and B. Demir, “The Effect of Respiratory on Dose Distributions in Radiotherapy of Lung Cancer: A Phantom Study”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 11, no. 1, pp. 51–60, 2016.