Research Article
BibTex RIS Cite

İn Vitro Çinko Uygulamasının DNA Hasarı, Lipid Peroksidasyonu ve Eritrosit Stabilitesi Üzerine Etkileri

Year 2019, Volume: 14 Issue: 2, 316 - 326, 30.11.2019
https://doi.org/10.29233/sdufeffd.436490

Abstract

Çinko; büyüme, hücre
bölünmesi, metabolizma, yara iyileşmesi, bağışıklık, üreme, tat ve görme
fonksiyonlarının işleyişi gibi birçok fizyolojik süreç için gerekli olan iki değerlikli bir geçiş iyondur. Çinko
maruziyetinin insan eritrosit zarının bazı özellikleri üzerindeki etkisi
in vitro olarak çalışıldı. Ayrıca, insan
periferal kan lenfositlerinde, çinkonun genotoksik potansiyelini ortaya koymak için
alkali comet analizi yapılmıştır. Farklı derişimdeki tüm Zn
2+
çözeltilerinin, doza bağımlı bir şekilde lipit oksidasyonunu inhibe etmede
oldukça zayıf bir etki göstermiştir. Eritrositlerin çinko ile inkübasyonunun
ardından, çinkonun hücrelerin hemolitik direncini belirgin bir şekilde azalmaya
yol
açtığını da saptadık. Çalışmalarımız, yüksek derişimde çinkonun
insan eritrositleri için toksik olabileceğini ve hemolitik direncin değişmesine
neden olabildiğini göstermektedir. Comet sonuçları, kontrolle
karşılaştırıldığında yüksek dozlardaki çinko, doz-bağımlı olarak anlamlı
düzeyde DNA hasarı oluşturdu (p <0.05). Bu çalışmanın
in vitro verileri yüksek dozda çinko alımının faydadan daha fazla
zarara neden olabileceğini düşündürmektedir.

References

  • [1] D. A. Scott, and A. M. Fisher, “The insulin and the zinc content of normal and diabetic pancreas,” The Journal of Clinical Investigation, 17 (6), 725–728, 1938.
  • [2] J. Miller, A. D. McLachan, and A. Klug, “Repetitive zinc-binding doains in the protein transcription factor IIA from Xenopus oocytes,” EMBO J., 4 (6), 1609–1614, 1985.
  • [3] C. Andreini, I. Bertini, and G. Cavallaro, “Minimal functional sites allow a classification of zinc sites in proteins,” PLoS One, 6 (10), e26325, 2011.
  • [4] J. M. Berg and Y. Shi, “The galvanization of biology: A growing appreciation for the roles of zinc,” Science, 271 (5252), 1081–1085, 1996.
  • [5] S. S. Krishna, “Structural classification of zinc fingers: Survey and Summary,” Nucleic Acids Res., 31 (2), 532–550, 2003.
  • [6] W. Maret, “Zinc and Sulfur: A Critical Biological Partnership,” Biochemistry, 43 (12), 3301–3309, 2004.
  • [7] J. C. King, K. H. Brown, R. S. Gibson, N. F. Kreps, N. M. Lowe, J. H. Siekmann, and D. J. Raiten, “Biomarkers of Nutrition for Development (BOND)--Zinc Review,” J. Nutr., 146 (4), 858S–885S, 2016.
  • [8] R. R. Briefel, K. Bialostosky, J. Kennedy-Stephenson, M. A. McDowell, R. B. Ervin, and J. D. Wright, “Zinc intake of the U.S. population: findings from the third National Health and Nutrition Examination Survey, 1988-1994.,” J. Nutr., 130 (5), 1367S–73S, 2000.
  • [9] European Food Safety Authority (EFSA) Panel on Dietetic Products, Nutrition and Allergies (NDA) “Scientific Opinion on Dietary Reference Values for zinc,” EFSA J., 12 (10), 3844, 2014.
  • [10] C. Abad, A. Teppa-Garrán, T. Proverbio, S. Piñero, F. Proverbio, and R. Marín, “Effect of magnesium sulfate on the calcium-stimulated adenosine triphosphatase activity and lipid peroxidation of red blood cell membranes from preeclamptic women,” Biochem. Pharmacol., 70, (11), 1634–1641, 2005.
  • [11] J. Stocks and T. L. Dormandy, “The autoxidation of human red cell lipids induced by hydrogen peroxide.,” Br. J. Haematol., 20 (1), 95–111, 1971.
  • [12] S. Nandhakumar, S. Parasuraman, M. M. Shanmugam, K. R. Rao, P. Chand, and B. V. Bhat, “Evaluation of DNA damage using single-cell gel electrophoresis (Comet Assay),” J. Pharmacol. Pharmacother., 2 (2), 107–111, 2011.
  • [13] B. M. Gyori, G. Venkatachalam, P. S. Thiagarajan, D. Hsu, and M. V. Clement, “OpenComet: An automated tool for comet assay image analysis,” Redox Biol., 2 (1), 457–465, 2014.
  • [14] Y. P. Tu and H. Xu, “Zn2+ inhibits the anion transport activity of Band 3 by binding to its cytoplasmic tail,” Biosci. Rep., 14 (4), 159-169, 1994.
  • [15] A. R. Collins, “The comet assay for DNA damage and repair,” Mol. Biotechnol., 26 (3), 249–261, 2004.
  • [16] A. Jenner, M. Ren, R. Rejendran, P. Ning, B. T. K. Huat, F. Watt, and B. Halliwell, “Zinc supplementation inhibits lipid peroxidation and the development of atherosclerosis in rabbits fed a high cholesterol diet.,” Free Radic. Biol. Med., 42 (4), 559–566, 2007.
  • [17] H. Tapiero and K. D. Tew, “Trace elements in human physiology and pathology: zinc and metallothioneins,” Biomed. Pharmacother., 57 (9), 399–411, 2003.
  • [18] S. Taysi, F. Akcay, C. Uslu, Y. Dogru, and I. Gulcin, “Trace elements and some extracellular antioxidant protein levels in serum of patients with laryngeal cancer,” Biol. Trace Elem. Res., 91 (1), 11–18, 2003.
  • [19] A. S. Prasad, F. W. Beck, B. Bao, J. T. Fitzgerald, D. C. Snell, J. D. Steinberg, and L. J. Cardozo, “Zinc supplementation decreases incidence of infections in the elderly: Effect of zinc on generation of cytokines and oxidative stress,” Am. J. Clin. Nutr., 85 (3), 837–844, 2007.
  • [20] A. Pagani, L. Villarreal, M. Capdevila, and S. Atrian, “The Saccharomyces cerevisiae Crs5 Metallothionein metal-binding abilities and its role in the response to zinc overload,” Mol. Microbiol., 63 (1), 256–269, 2007.
  • [21] D. J. Eide, “Zinc transporters and the cellular trafficking of zinc,” Biochimica et Biophysica Acta - Molecular Cell Research, 1763 (7), 711–722, 2006.
  • [22] T. M. Bray and W. J. Bettger, “The physiological role of zinc as an antioxidant,” Free Radic. Biol. Med., 8 (3), 281–291, 1990.
  • [23] W. Maret, “Metallothionein redox biology in the cytoprotective and cytotoxic functions of zinc,” Experimental Gerontology, 43 (5), 363–369, 2008.
  • [24] D. J. Eide, “The oxidative stress of zinc deficiency.,” Metallomics, 3 (11), 1124–9, 2011.
  • [25] P. I. Oteiza, K. L. Olin, C. G. Fraga, and C. L. Keen, “Zinc deficiency causes oxidative damage to proteins, lipids and DNA in rat testes.,” J. Nutr., 125(4), 823–9, 1995.
  • [26] A. S. Prasad, B. Bao, F. W. J. Beck, O. Kucuk, and F. H. Sarkar, “Antioxidant effect of zinc in humans,” Free Radic. Biol. Med., 37 (8), 1182–1190, 2004.
  • [27] E. Ho, “Zinc deficiency, DNA damage and cancer risk,” J. Nutr. Biochem., 15 (10), 572–578, 2004.
  • [28] Y. Song, S. W. Leonard, M. G. Traber, and E. Ho, “Zinc deficiency affects DNA damage, oxidative stress, antioxidant defenses, and DNA repair in rats.,” J. Nutr., 139 (9), 1626–31, 2009.
  • [29] J. B. Kirkland, “Niacin requirements for genomic stability,” Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 733 (1-2), 14-20, 2012.
  • [30] S. H. Zeisel, “Nutritional Genomics: Defining the Dietary Requirement and Effects of Choline,” J. Nutr., 141 (3), 531–534, 2011.

Effects of In Vitro Zinc Treatment on the DNA Damage, Lipid Peroxidation and Erythrocyte Stability

Year 2019, Volume: 14 Issue: 2, 316 - 326, 30.11.2019
https://doi.org/10.29233/sdufeffd.436490

Abstract

Zinc
is a divalent transition ion essential for many physiological processes
including: the growth and cell division, metabolism, wound healing, immunity,
reproduction, functioning of taste and eyesight. The effect of zinc exposure on
some properties of the human erythrocyte membrane was studied
in vitro. In addition, the alkaline
comet assay was used to investigate genotoxicity potential of the zinc in the
peripheral blood lymphocytes. In this study, all the various concentrations of
Zn
2+ solutions showed quite weak efficacy to inhibit lipid oxidation
in dose dependent manner. We also detected that incubation of erythrocytes with
zinc lead to the marked decrease of haemolytic resistance of the cells. Our
studies demonstrate that zinc at higher concentrations may be toxic to human
erythrocytes causing changes in the haemolytic resistance. The comet results
indicated a significant DNA damage at higher doses after treatment with zinc
when compared to controls showing a clear dose-dependent response (p<0.05).
The
in vitro data of the present
study suggest that high dosage intake of zinc may cause more harm than benefit.

References

  • [1] D. A. Scott, and A. M. Fisher, “The insulin and the zinc content of normal and diabetic pancreas,” The Journal of Clinical Investigation, 17 (6), 725–728, 1938.
  • [2] J. Miller, A. D. McLachan, and A. Klug, “Repetitive zinc-binding doains in the protein transcription factor IIA from Xenopus oocytes,” EMBO J., 4 (6), 1609–1614, 1985.
  • [3] C. Andreini, I. Bertini, and G. Cavallaro, “Minimal functional sites allow a classification of zinc sites in proteins,” PLoS One, 6 (10), e26325, 2011.
  • [4] J. M. Berg and Y. Shi, “The galvanization of biology: A growing appreciation for the roles of zinc,” Science, 271 (5252), 1081–1085, 1996.
  • [5] S. S. Krishna, “Structural classification of zinc fingers: Survey and Summary,” Nucleic Acids Res., 31 (2), 532–550, 2003.
  • [6] W. Maret, “Zinc and Sulfur: A Critical Biological Partnership,” Biochemistry, 43 (12), 3301–3309, 2004.
  • [7] J. C. King, K. H. Brown, R. S. Gibson, N. F. Kreps, N. M. Lowe, J. H. Siekmann, and D. J. Raiten, “Biomarkers of Nutrition for Development (BOND)--Zinc Review,” J. Nutr., 146 (4), 858S–885S, 2016.
  • [8] R. R. Briefel, K. Bialostosky, J. Kennedy-Stephenson, M. A. McDowell, R. B. Ervin, and J. D. Wright, “Zinc intake of the U.S. population: findings from the third National Health and Nutrition Examination Survey, 1988-1994.,” J. Nutr., 130 (5), 1367S–73S, 2000.
  • [9] European Food Safety Authority (EFSA) Panel on Dietetic Products, Nutrition and Allergies (NDA) “Scientific Opinion on Dietary Reference Values for zinc,” EFSA J., 12 (10), 3844, 2014.
  • [10] C. Abad, A. Teppa-Garrán, T. Proverbio, S. Piñero, F. Proverbio, and R. Marín, “Effect of magnesium sulfate on the calcium-stimulated adenosine triphosphatase activity and lipid peroxidation of red blood cell membranes from preeclamptic women,” Biochem. Pharmacol., 70, (11), 1634–1641, 2005.
  • [11] J. Stocks and T. L. Dormandy, “The autoxidation of human red cell lipids induced by hydrogen peroxide.,” Br. J. Haematol., 20 (1), 95–111, 1971.
  • [12] S. Nandhakumar, S. Parasuraman, M. M. Shanmugam, K. R. Rao, P. Chand, and B. V. Bhat, “Evaluation of DNA damage using single-cell gel electrophoresis (Comet Assay),” J. Pharmacol. Pharmacother., 2 (2), 107–111, 2011.
  • [13] B. M. Gyori, G. Venkatachalam, P. S. Thiagarajan, D. Hsu, and M. V. Clement, “OpenComet: An automated tool for comet assay image analysis,” Redox Biol., 2 (1), 457–465, 2014.
  • [14] Y. P. Tu and H. Xu, “Zn2+ inhibits the anion transport activity of Band 3 by binding to its cytoplasmic tail,” Biosci. Rep., 14 (4), 159-169, 1994.
  • [15] A. R. Collins, “The comet assay for DNA damage and repair,” Mol. Biotechnol., 26 (3), 249–261, 2004.
  • [16] A. Jenner, M. Ren, R. Rejendran, P. Ning, B. T. K. Huat, F. Watt, and B. Halliwell, “Zinc supplementation inhibits lipid peroxidation and the development of atherosclerosis in rabbits fed a high cholesterol diet.,” Free Radic. Biol. Med., 42 (4), 559–566, 2007.
  • [17] H. Tapiero and K. D. Tew, “Trace elements in human physiology and pathology: zinc and metallothioneins,” Biomed. Pharmacother., 57 (9), 399–411, 2003.
  • [18] S. Taysi, F. Akcay, C. Uslu, Y. Dogru, and I. Gulcin, “Trace elements and some extracellular antioxidant protein levels in serum of patients with laryngeal cancer,” Biol. Trace Elem. Res., 91 (1), 11–18, 2003.
  • [19] A. S. Prasad, F. W. Beck, B. Bao, J. T. Fitzgerald, D. C. Snell, J. D. Steinberg, and L. J. Cardozo, “Zinc supplementation decreases incidence of infections in the elderly: Effect of zinc on generation of cytokines and oxidative stress,” Am. J. Clin. Nutr., 85 (3), 837–844, 2007.
  • [20] A. Pagani, L. Villarreal, M. Capdevila, and S. Atrian, “The Saccharomyces cerevisiae Crs5 Metallothionein metal-binding abilities and its role in the response to zinc overload,” Mol. Microbiol., 63 (1), 256–269, 2007.
  • [21] D. J. Eide, “Zinc transporters and the cellular trafficking of zinc,” Biochimica et Biophysica Acta - Molecular Cell Research, 1763 (7), 711–722, 2006.
  • [22] T. M. Bray and W. J. Bettger, “The physiological role of zinc as an antioxidant,” Free Radic. Biol. Med., 8 (3), 281–291, 1990.
  • [23] W. Maret, “Metallothionein redox biology in the cytoprotective and cytotoxic functions of zinc,” Experimental Gerontology, 43 (5), 363–369, 2008.
  • [24] D. J. Eide, “The oxidative stress of zinc deficiency.,” Metallomics, 3 (11), 1124–9, 2011.
  • [25] P. I. Oteiza, K. L. Olin, C. G. Fraga, and C. L. Keen, “Zinc deficiency causes oxidative damage to proteins, lipids and DNA in rat testes.,” J. Nutr., 125(4), 823–9, 1995.
  • [26] A. S. Prasad, B. Bao, F. W. J. Beck, O. Kucuk, and F. H. Sarkar, “Antioxidant effect of zinc in humans,” Free Radic. Biol. Med., 37 (8), 1182–1190, 2004.
  • [27] E. Ho, “Zinc deficiency, DNA damage and cancer risk,” J. Nutr. Biochem., 15 (10), 572–578, 2004.
  • [28] Y. Song, S. W. Leonard, M. G. Traber, and E. Ho, “Zinc deficiency affects DNA damage, oxidative stress, antioxidant defenses, and DNA repair in rats.,” J. Nutr., 139 (9), 1626–31, 2009.
  • [29] J. B. Kirkland, “Niacin requirements for genomic stability,” Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 733 (1-2), 14-20, 2012.
  • [30] S. H. Zeisel, “Nutritional Genomics: Defining the Dietary Requirement and Effects of Choline,” J. Nutr., 141 (3), 531–534, 2011.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Makaleler
Authors

Tuğba Demiral This is me 0000-0001-9745-9368

Muhammet Yusuf Tepebaşı 0000-0002-1087-4874

Furkan Calapoğlu This is me 0000-0001-5678-8333

Ayşe Bülbül This is me 0000-0002-5527-3992

Mustafa Calapoğlu This is me 0000-0002-6539-1335

Publication Date November 30, 2019
Published in Issue Year 2019 Volume: 14 Issue: 2

Cite

IEEE T. Demiral, M. Y. Tepebaşı, F. Calapoğlu, A. Bülbül, and M. Calapoğlu, “İn Vitro Çinko Uygulamasının DNA Hasarı, Lipid Peroksidasyonu ve Eritrosit Stabilitesi Üzerine Etkileri”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 14, no. 2, pp. 316–326, 2019, doi: 10.29233/sdufeffd.436490.