A Meshless Method for the Coupled Nonlinear Schrödinger Equations
Year 2019,
Volume: 14 Issue: 2, 418 - 435, 30.11.2019
Bahar Karaman
,
Yılmaz Dereli
Abstract
The
current investigation studies a meshfree method based on radial basis functions
collocation method (RBFC) to obtain numerically solutions of the coupled
nonlinear Schrödinger (CNLS) equations. Forward difference is used for the
temporal discretization and the average value of the function in consecutive
time step is used for other terms. The stability analysis of the proposed
method is investigated by using Von-Neumann stability technique for the
governing equations. To accuracy of the proposed method, test problems which
include the single soliton motion and two interaction are used. For every test problems,
all obtained numerical results are presented in tables and figures. The
obtained numerical experiments are compared with analytical and published
numerical solutions to confirm the accuracy and efficiency of the suggested
scheme.
References
- [1] G. R. Liu, Mesh free Methods: Moving Beyond the Finite Element Method, CRC Press. R. W., 2003.
- [2] X. Hu, L. Zhang, “Conservative compact difference scheme for the coupled nonlinear Schrödinger equation system,” Numer. Methods Partial Differ. Eq., 30, 749-772, 2014.
- [3] M. İsmail, T. Taha, “Numerical simulation of coupled nonlinear Schrödinger equation,” Math. Comput. Sim., 56, 547-562, 2001.
- [4] M. İsmail, S. Alamri, “Highly accurate finite difference method for coupled nonlinear Schrödinger equation,” Comput. Math. Appl., 81, 333-351, 2004.
- [5] M. İsmail, T. Taha, “A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation,” Math. Comput. Sim., 74, 302-311, 2007.
- [6] A. Kurtianitis, F. Ivanauska, “Finite difference solution methods for a system of the nonlinear Schrödinger equations,” Nonlinear Anal. Model. Control, 9 (3), 247-258, 2004.
- [7] B. Reichel, S. Leble, “On convergence and stability of a numerical scheme of coupled nonlinear Schrödinger equations,” Comput. Math. Appl. 55, 745-759, 2008.
- [8] J. Sun, X. Gu ve Z. Ma, “Numerical stuy of the soliton waves of the coupled nonlinear Schrödinger system,” Phys. D, 196, 311-328, 2004.
- [9] Z. Sun, D. Zhao, “On the L_∞ convergence of a difference scheme for coupled nonlinear Schrödinger equations,” Comput. Math. Appl., 59, 3286-3300, 2010.
- [10] T. Wang, T. Nie ve L. Zhang, “Analysis of a symplectic difference scheme for a coupled nonlinear Schrödinger system,” J. Comput. Appl. Math., 231, 745-759, 2009.
- [11] J. Chen ve L. Zhang. Numerical approximation of solution for the coupled nonlinear Schrödinger equations. Acta Math. Sin., 33, 435-450, 2017.
- [12] A. Kaplan ve Y. Dereli. “A meshless method and stability analysis for the nonlinear Schrödinger equation,” Waves Random Complex Media, 27(4), 602-614, 2017.
- [13] Y. Dereli. “The meshless kernel-based method of lines for the numerical solution of the nonlinear Schrödinger equation” Eng. Anal. Bound. Elem., 36, 1416-1423, 2012.
- [14] R. L. Hardy, R.L, “Multiquadric equations of topography and other irregular surfaces,” J. Geophys. Res., 76, 1905-1915, 1971.
- [15] R, Franke, “Scattered data interpolation: Tests of some methods,” Math. Comp., 38, 181-200, 1982.
- [16] W. R. Madcy ve S. A. Nelson, “Multivariable interpolation and conditionally positive definite functions II,” Math. Comput., 54, 211-230, 1990.
- [17] C. A. Micchelli, “Interpolation of scattered data: distance matrix and conditionally positive definite functions,” Construct. Approx., 2, 11-22, 1986.
- [18] E. J. Kansa, “Multiquadrics scattered data approximation scheme with applications to computational fluid-dynamics, II: Solutions to hyperbolic, parabolic and elliptic partial differential equations,” Comput. Math. Appl., 19, 149-161, 1990.
- [19] C. Franke ve R. Schaback, “Solving partial differential equations by collocation with radial basis functions,” Appl. Math. Comput., 93, 73-82, 1998.
- [20] C. Franke ve R. Schaback,” Convergence order estimates of meshless collocation methods using radial basis functions,” Adv. Comput. Math., 8, 381-399, 1998.
- [21] Z. Wu ve R. Schaback, “Local error estimates for radial basis function interpolation of scattered data,” IMA J. Numer. Anal., 13, 13-27,1993.
- [22] N. Dyn. “Interpolation of scattered data by radial functions,” in: Topics in Multivariate Approximation, Academic Press, 47–61, 1987.
- [23] N. Dyn. “Interpolation and approximation by radial and related functions,” New York: Academic Press, 211–234, 1989.
- [24] R. Schaback. “Multivariate interpolation and approximation by translates of a basis function,” in: “Approximation Theory VIII, Vol. 1: Approximation and Interpolation,” Singapore: World Scientific, 491–514, 1995.
- [25] B. Fornberg ve N. Flyer . “Solving PDEs with radial basis functions,” Acta Numerica, 24, 215-258, 2015.
- [26] M. Batan. “En küçük kareler destek vektör makineleriyle serbest yüzeyli akımlarınn havalandırma veriminin modellenmesi,” Yüksek lisans tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, 2009.
- [27] C. C Lee, P. C. Chung, J. R. Tsai ve C.I Chang. “Robust radial basis function neural networks,” IEEE Trans. Syst. Man Cybern. B Cybern., 29(6), 1999.
- [28] A. Mellit, A. M. Pavan ve M. Benghanem. “Least squares support vector machine for short term prediction of meterological time series,” Theor. Appl. Climatol., 111, 297-302, 2013.
- [29] E. Tarwater, “A parameter study of Hardy's multiquadric method for scattered data interpolation,” Lawrence Livermore National Labaoratory, Technical report, UCRL-54670, 1985.
- [30] R. E. Carlson, ve T. A. Foley, “The parameter in multiquadric interpolation,” Comput. Math. Appl., 21, 29-42, 1991.
- [31] W. R. Madych, “Miscellaneous error bounds for multiquadric and related interpolations,” Comput. Math. Appl., 24, 121-138, 1992.
- [32] R. Schaback, “Error estimates and condition numbers for radial basis function interpolation,” Adv. Comput. Math., 3, 251-264, 1995.
- [33] A. H. D. Cheng, M. A. Golberg, E. J. Kansa ve G. Zammito, “Exponential convergence and multiquadric collocation method for partial differential equations,” Numer. Methods for Partial Diff. Eq., 19, 571-594, 2003.
- [34] H. Wendland, Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics, Cambridge: Cambridge University Press, 17, 2005.
- [35] M. Wadati, T. Izuka ve M. Hisakado, “A coupled nonlinear Schrödinger equation and optical solitons,” J. Phys. Soc. Japan, 61, 2241-2245, 199.
Lineer Olmayan İkili Schrödinger Denklemi için Ağsız Bir Yöntem
Year 2019,
Volume: 14 Issue: 2, 418 - 435, 30.11.2019
Bahar Karaman
,
Yılmaz Dereli
Abstract
Bu çalışma ağsız bir
yöntem olan radyal tabanlı fonksiyonlarla kollokasyon (RBFC) yöntemi ile lineer
olmayan ikili Schrödinger denklemlerinin (CNLS) sayısal çözümlerinin elde
edilmesi üzerinedir. Zaman ayrıştırması için ileri fark ve kalan terimler
içinde fonksiyonun ardışık zaman adımındaki ortalama değerleri kullanılmıştır.
CNLS denklemi için kullanılan yöntemin kararlılık analizi incelemesi
Von-Neumann kararlılık metodu kullanılarak yapılmıştır. Metodun geçerliliğini
göstermek için tek soliton dalga hareketi ve iki solitonun etkileşimini içeren
dört farklı test problemi ele alınmıştır. Her bir test problemi için sayısal
sonuçlar grafikler ve tablolar yardımıyla gösterilmiştir. Ayrıca önerilen
yöntemin geçerliliğini, verimliliğini ve etkinliğini göstermek için elde edilen
sayısal sonuçlar analitik ve literatürde var olan sonuçlar ile
karşılaştırılmıştır.
References
- [1] G. R. Liu, Mesh free Methods: Moving Beyond the Finite Element Method, CRC Press. R. W., 2003.
- [2] X. Hu, L. Zhang, “Conservative compact difference scheme for the coupled nonlinear Schrödinger equation system,” Numer. Methods Partial Differ. Eq., 30, 749-772, 2014.
- [3] M. İsmail, T. Taha, “Numerical simulation of coupled nonlinear Schrödinger equation,” Math. Comput. Sim., 56, 547-562, 2001.
- [4] M. İsmail, S. Alamri, “Highly accurate finite difference method for coupled nonlinear Schrödinger equation,” Comput. Math. Appl., 81, 333-351, 2004.
- [5] M. İsmail, T. Taha, “A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation,” Math. Comput. Sim., 74, 302-311, 2007.
- [6] A. Kurtianitis, F. Ivanauska, “Finite difference solution methods for a system of the nonlinear Schrödinger equations,” Nonlinear Anal. Model. Control, 9 (3), 247-258, 2004.
- [7] B. Reichel, S. Leble, “On convergence and stability of a numerical scheme of coupled nonlinear Schrödinger equations,” Comput. Math. Appl. 55, 745-759, 2008.
- [8] J. Sun, X. Gu ve Z. Ma, “Numerical stuy of the soliton waves of the coupled nonlinear Schrödinger system,” Phys. D, 196, 311-328, 2004.
- [9] Z. Sun, D. Zhao, “On the L_∞ convergence of a difference scheme for coupled nonlinear Schrödinger equations,” Comput. Math. Appl., 59, 3286-3300, 2010.
- [10] T. Wang, T. Nie ve L. Zhang, “Analysis of a symplectic difference scheme for a coupled nonlinear Schrödinger system,” J. Comput. Appl. Math., 231, 745-759, 2009.
- [11] J. Chen ve L. Zhang. Numerical approximation of solution for the coupled nonlinear Schrödinger equations. Acta Math. Sin., 33, 435-450, 2017.
- [12] A. Kaplan ve Y. Dereli. “A meshless method and stability analysis for the nonlinear Schrödinger equation,” Waves Random Complex Media, 27(4), 602-614, 2017.
- [13] Y. Dereli. “The meshless kernel-based method of lines for the numerical solution of the nonlinear Schrödinger equation” Eng. Anal. Bound. Elem., 36, 1416-1423, 2012.
- [14] R. L. Hardy, R.L, “Multiquadric equations of topography and other irregular surfaces,” J. Geophys. Res., 76, 1905-1915, 1971.
- [15] R, Franke, “Scattered data interpolation: Tests of some methods,” Math. Comp., 38, 181-200, 1982.
- [16] W. R. Madcy ve S. A. Nelson, “Multivariable interpolation and conditionally positive definite functions II,” Math. Comput., 54, 211-230, 1990.
- [17] C. A. Micchelli, “Interpolation of scattered data: distance matrix and conditionally positive definite functions,” Construct. Approx., 2, 11-22, 1986.
- [18] E. J. Kansa, “Multiquadrics scattered data approximation scheme with applications to computational fluid-dynamics, II: Solutions to hyperbolic, parabolic and elliptic partial differential equations,” Comput. Math. Appl., 19, 149-161, 1990.
- [19] C. Franke ve R. Schaback, “Solving partial differential equations by collocation with radial basis functions,” Appl. Math. Comput., 93, 73-82, 1998.
- [20] C. Franke ve R. Schaback,” Convergence order estimates of meshless collocation methods using radial basis functions,” Adv. Comput. Math., 8, 381-399, 1998.
- [21] Z. Wu ve R. Schaback, “Local error estimates for radial basis function interpolation of scattered data,” IMA J. Numer. Anal., 13, 13-27,1993.
- [22] N. Dyn. “Interpolation of scattered data by radial functions,” in: Topics in Multivariate Approximation, Academic Press, 47–61, 1987.
- [23] N. Dyn. “Interpolation and approximation by radial and related functions,” New York: Academic Press, 211–234, 1989.
- [24] R. Schaback. “Multivariate interpolation and approximation by translates of a basis function,” in: “Approximation Theory VIII, Vol. 1: Approximation and Interpolation,” Singapore: World Scientific, 491–514, 1995.
- [25] B. Fornberg ve N. Flyer . “Solving PDEs with radial basis functions,” Acta Numerica, 24, 215-258, 2015.
- [26] M. Batan. “En küçük kareler destek vektör makineleriyle serbest yüzeyli akımlarınn havalandırma veriminin modellenmesi,” Yüksek lisans tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, 2009.
- [27] C. C Lee, P. C. Chung, J. R. Tsai ve C.I Chang. “Robust radial basis function neural networks,” IEEE Trans. Syst. Man Cybern. B Cybern., 29(6), 1999.
- [28] A. Mellit, A. M. Pavan ve M. Benghanem. “Least squares support vector machine for short term prediction of meterological time series,” Theor. Appl. Climatol., 111, 297-302, 2013.
- [29] E. Tarwater, “A parameter study of Hardy's multiquadric method for scattered data interpolation,” Lawrence Livermore National Labaoratory, Technical report, UCRL-54670, 1985.
- [30] R. E. Carlson, ve T. A. Foley, “The parameter in multiquadric interpolation,” Comput. Math. Appl., 21, 29-42, 1991.
- [31] W. R. Madych, “Miscellaneous error bounds for multiquadric and related interpolations,” Comput. Math. Appl., 24, 121-138, 1992.
- [32] R. Schaback, “Error estimates and condition numbers for radial basis function interpolation,” Adv. Comput. Math., 3, 251-264, 1995.
- [33] A. H. D. Cheng, M. A. Golberg, E. J. Kansa ve G. Zammito, “Exponential convergence and multiquadric collocation method for partial differential equations,” Numer. Methods for Partial Diff. Eq., 19, 571-594, 2003.
- [34] H. Wendland, Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics, Cambridge: Cambridge University Press, 17, 2005.
- [35] M. Wadati, T. Izuka ve M. Hisakado, “A coupled nonlinear Schrödinger equation and optical solitons,” J. Phys. Soc. Japan, 61, 2241-2245, 199.