Research Article
BibTex RIS Cite

Dosimetric Comparison of 3D-CRT, IMRT, IMAT and Helical Tomotherapy for Thoracic Esophageal Carcinoma

Year 2020, Volume: 15 Issue: 1, 130 - 139, 31.05.2020
https://doi.org/10.29233/sdufeffd.698994

Abstract

In this study, we compared the dose-volume parameters for treatment of thoracic esophageal cancer with treatment plans for 3D-CRT, IMRT, IMAT and HT. 15 thoracic esophagus patients who were treated in our clinic between 2017-2018 years were selected. PTV volumes were between 205 and 445.4 cc with an average of 355.2 cc. 3D-CRT, IMRT, IMAT and HT radiotherapy plans were created for each patient using the same contours and the same dose planning prescription. Total dose of 50.4 Gy for all patients was planed with 180 cGy dose per a fraction in total 28 fractions. For PTV; when the four treatment techniques were compared, HI values were 3D-CRT 0.84 ± 0.0, IMRT 0.57 ± 0.05, IMAT 0.06 ± 0.013, HT 0.08 ± 0.03 (p <0.05). CI values were found for 3D-CRT as 1.84 ± 0.2, for IMRT as 1.25 ± 0.05, for IMAT as 1.19 ± 0.04, for HT as 1.2 ± 0.06 (p <0.05). IMRT and IMAT techniques provided better OAR protection compared to other techniques in all lung and heart comparisons. The lowest doses for Dmax and D1% of Spinal Cord were provided by HT technique. We found that IMRT, IMAT and HT techniques have lower critical organ doses than 3D-CRT technique for treating torasic esophageal cancer. Considering the current evidence of the relationship between radiation-induced cardiac toxicity in the literature and the dose-volume parameters after treatment for esophageal cancer in our study, we can say that dose plans are better for IMRT and IMAT plans than 3D-CRT and HT in terms of lung and heart doses.

References

  • [1] T. Kataria, H. B. Govardhan, D. Gupta, U. Mohanraj, S. S. Bisht, and R. Sambasivaselli, “Dosimetric comparison between Volumetric Modulated Arc Therapy (VMAT) vs Intensity Modulated Radiation Therapy (IMRT) for radiotherapy of mid esophageal carcinoma,” J. Can. Tes. Ther., 10 (4), 871, 2014.
  • [2] S. Martin,J. Z.Chen, A. R. Dar, and S. Yartsev, “Dosimetric comparison of helical tomotherapy, RapidArc, and a novel IMRT & Arc technique for esophageal carcinoma,” Radiother. Oncol., 101 (3), 431-437, 2011.
  • [3] L. Gharzai, V.Verma, K. A. Denniston, A.R. Bhirud, N. R. Bennion, and C. Lin,” radiation therapy and cardiac death in long-term survivors of esophageal cancer: An analysis of the surveillance, epidemiology, and end result database,” PLOS ONE, 11 (7), 1-13, 2016.
  • [4] K. Rugbjerg, L. Mellemkjaer, J.D. Boice, L. Køber, M. Ewertz, and J. H. Olsen,“Cardiovascular disease in survivors of adolescent and young adult cancer: a Danish cohort study1943–2009,” J. Natl. Cancer. Inst., 106 (6), 1–10, 2014.
  • [5] F. A.Van Nimwegen, M. Schaapveld, D. J. Cutter, C. P. Janus, A. D. Krol, and M. Hauptmann, “Radiation Dose- Response Relationsihp for Risk of Coronary Heart Disease in Survivors of Hodgkin Lymphoma,”J. Clin. Oncl., 34 (3), 235–243, 2016.
  • [6] S. C. Darby, M. Ewertz, P. McGale, A. M. Bennet, U. Blom-Goldman, and D. Brønnum, “Risk of ischemic heart disease in women after radiotherapy for breast cancer,” N. Engl. J. Med., 368(11), 987–998, 2013.
  • [7] C. M. Nutting, J. L. Bedford, V. P. Cosgrove, and D. M. Tait, “A comparison of conformal and intensity-modulated techniques for oesophageal radiotherapy,” Radiother Oncol, 61, 157–163, 2005.
  • [8] M. Oliver, W. Ansbacher, and W.A. Beckham,” Comparing planning time, delivery time and plan quality for IMRT, RapidArc and Tomotherapy,” J. Appl. Clin. Med. Phys., 10, 3068, 2009.
  • [9] J.C. Beukema, P. Van Luijk, J. Widder, J.A. Langendijk, and C.T. Muijs,” Is cardiac toxicity a relevant issue in the radiation treatment of esophageal cancer?,” Radiother Oncol, 114, 80–85, 2015.
  • [10] The International Commission on Radiation Units and Measurements. Prescribing, Recording, and Reporting Photon - Beam Intensity - Modulated Radiation Therapy (IMRT), ICRU Report 83. ICRU 2010.
  • [11] L. Feuvret, G. Noël, J. J. Mazeron, and P. Bey, “Conformity index: areview,”Int. J. Radiat. Oncol. Biol. Phys., 64 (2), 333–342, 2006.
  • [12] A. Van’t Riet, A. Mak, and M. Moerland, “A conformationnumber to quantify the degree of conformality inbrachytherapy and external beam irradiation,”Int. J. Radiat. Oncol. Biol. Phys., 37, 731–763, 1997.
  • [13] A. E. Karaoguz, Z. A. Alıcıkus, D. Akcay, H. Ellidokuz, and K. Akgungor,“Which one is the better radiotherapy technique for patients with Thoracic Esophageal Tumors, IMRT or VMAT?” Inter. J. Hemot. Oncol., 4 (27), 244-252, 2017.
  • [14] A. Konski, T. Li, M. Christensen, J. D. Cheng, J. Q. Yu, and K. Crawford, “Symptomatic cardiac toxicity is predicted by dosimetric and patient factors rather than changes in 18F-FDG PET determination of myocardial activity after chemoradiotherapy for esophageal cancer,” Radiother. Oncol., 104, 72–77, 2012.
  • [15] M. K. Martel, W. M. Sahijdak, and R. K. Ten Haken,“Fraction size and dose parameters related to the incidence of pericardial effusions,” Int. J. Radiat. Oncol. Biol. Phys., 40, 155–161, 1998.
  • [16] X. Wei, H. H. Liu, and S. L. Tucker, “Risk factors for pericardial effusion in inoperable esophageal cancer patients treated with definitive chemoradiation therapy,” Int. J. Radiat. Oncol. Biol. Phys., 70, 707–714, 2008
  • [17] J. D. Bradley, R. Paulus, and R. Komaki,“ Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study,”The Lancet Oncol, 16 (2), 187–199, 2015.
  • [18] G. Gagliardi, L. S. Constine, and V. Moiseenko,“ Radiation dose-volume effects in the heart,” Int. J. Radiat. Oncol. Biol. Phys., 76, 77–85, 2010.
  • [19] S. K. Das, A. H. Baydush, and S. Zhou, “Predicting radiotherapy-induced cardiac perfusion defects,” Med. Phys., 32 (1), 19–27, 2005.
  • [20] L. Tucker, H. Liu, and S. Wang,”Dose–volume modeling of the risk of post operative pulmonary complications among esophageal cancer patients treated with concurrent chemo-radiotherapy followed by surgery,” Int. J. Radiat. Oncol. Biol Phys., 66, 754-761, 2006.
  • [21] J. M. Schallenkamp, R. C. Miller, and D. H. Brinkmann, “Incidence of radiation pneumonitis after thoracic irradiation: Dose–volume correlates,” Int. J. Radiat. Oncol. Biol. Phys., 67, 410-416, 2007.
  • [22] M. V. Graham, J. A. Purdy, and B. Emami, “Clinical dose–volume histogram analysis for pneumonitis after 3D treatment for non–small cell lung cancer (NSCLC),” Int. J. Radiat. Oncol. Biol. Phys., 45, 323-329, 1999.
  • [23] K. Tsujino, S. Hirota, and M. Endo, “Predictive value of dose– volume histogram parameters for predicting radiation pneu¬monitis after concurrent chemoradiation for lung cancer,” Int. J. Radiat. Oncol. Biol. Phys., 55, 110-115, 2003.
  • [24] E. D. Yorke, A. Jackson, and K. E. Rosenzweig, ”Correlation of dosimetric factors and radiation pneumonitis for non–small cell lung cancer patients in a recently completed dose escalation study,” Int. J. Radiat. Oncol. Biol. Phys., 63, 672-682, 2005.

Torasik Özofagus Karsinomunda 3D-CRT, IMRT, IMAT ve Helical Tomoterapinin Dozimetrik Karşılaştırması

Year 2020, Volume: 15 Issue: 1, 130 - 139, 31.05.2020
https://doi.org/10.29233/sdufeffd.698994

Abstract

Bu çalışmada, torasik özofagus kanserinin tedavisi için 3D-CRT, IMRT, IMAT ve HT tedavi planlarının doz-hacim parametrelerini karşılaştırdık. Çalışma için kliniğimizde 2017-2018 yılları arasında tedavi edilen 15 torasik özofagus hastası seçildi. PTV hacimleri 205 cc ile 445.4 cc arasındaydı ve ortalama değer 355,2 cc idi. Her hasta için aynı konturları ve aynı doz planlama reçetesini kullanarak 3D-CRT, IMRT, IMAT ve HT radyoterapi planları oluşturuldu. Her bir plan için, toplam 28 fraksiyon ile fraksiyon başına 180 cGy doz ile toplamda 50,4 Gy'lik bir doz uygulanmıştır. PTV için; dört tedavi tekniği karşılaştırıldığında HI değerleri 3D-CRT için 0,84 ± 0,0, IMRT için 0,57 ± 0,05, IMAT için 0,06 ± 0,013 ve HT için 0,08 ± 0,03 (p <0.05) bulundu. CI değerleri için ise 3D-CRT için 1,84 ± 0,2, IMRT için 1,25 ± 0,05, IMAT için 1,19 ± 0,04 ve HT için 1,2 ± 0.06 (p <0,05) vardı. IMRT ve IMAT teknikleri, tüm akciğer ve kalp dozu karşılaştırmalarında, diğer tekniklere kıyasla daha iyi OAR koruması sağlamıştır. Omurilik Dmax ve D1% dozları için en düşük dozlar HT tekniği ile sağlanmıştır. IMRT, IMAT ve HT tekniklerinin torasik özofagus kanserini tedavi etmek için 3D-CRT tekniğinden daha düşük kritik organ dozlarına sahip olduğunu bulduk. Çalışmamızda özofagus kanseri tedavisinden sonra radyasyona bağlı kardiyak toksisite ile doz-hacim parametreleri arasındaki ilişkinin literatürdeli mevcut kanıtları da göz önüne alındığında, IMRT ve IMAT planları için doz planlarının 3D-CRT ve HT'den akciğer ve kalp dozları açısından daha iyi olduğunu söyleyebiliriz.

References

  • [1] T. Kataria, H. B. Govardhan, D. Gupta, U. Mohanraj, S. S. Bisht, and R. Sambasivaselli, “Dosimetric comparison between Volumetric Modulated Arc Therapy (VMAT) vs Intensity Modulated Radiation Therapy (IMRT) for radiotherapy of mid esophageal carcinoma,” J. Can. Tes. Ther., 10 (4), 871, 2014.
  • [2] S. Martin,J. Z.Chen, A. R. Dar, and S. Yartsev, “Dosimetric comparison of helical tomotherapy, RapidArc, and a novel IMRT & Arc technique for esophageal carcinoma,” Radiother. Oncol., 101 (3), 431-437, 2011.
  • [3] L. Gharzai, V.Verma, K. A. Denniston, A.R. Bhirud, N. R. Bennion, and C. Lin,” radiation therapy and cardiac death in long-term survivors of esophageal cancer: An analysis of the surveillance, epidemiology, and end result database,” PLOS ONE, 11 (7), 1-13, 2016.
  • [4] K. Rugbjerg, L. Mellemkjaer, J.D. Boice, L. Køber, M. Ewertz, and J. H. Olsen,“Cardiovascular disease in survivors of adolescent and young adult cancer: a Danish cohort study1943–2009,” J. Natl. Cancer. Inst., 106 (6), 1–10, 2014.
  • [5] F. A.Van Nimwegen, M. Schaapveld, D. J. Cutter, C. P. Janus, A. D. Krol, and M. Hauptmann, “Radiation Dose- Response Relationsihp for Risk of Coronary Heart Disease in Survivors of Hodgkin Lymphoma,”J. Clin. Oncl., 34 (3), 235–243, 2016.
  • [6] S. C. Darby, M. Ewertz, P. McGale, A. M. Bennet, U. Blom-Goldman, and D. Brønnum, “Risk of ischemic heart disease in women after radiotherapy for breast cancer,” N. Engl. J. Med., 368(11), 987–998, 2013.
  • [7] C. M. Nutting, J. L. Bedford, V. P. Cosgrove, and D. M. Tait, “A comparison of conformal and intensity-modulated techniques for oesophageal radiotherapy,” Radiother Oncol, 61, 157–163, 2005.
  • [8] M. Oliver, W. Ansbacher, and W.A. Beckham,” Comparing planning time, delivery time and plan quality for IMRT, RapidArc and Tomotherapy,” J. Appl. Clin. Med. Phys., 10, 3068, 2009.
  • [9] J.C. Beukema, P. Van Luijk, J. Widder, J.A. Langendijk, and C.T. Muijs,” Is cardiac toxicity a relevant issue in the radiation treatment of esophageal cancer?,” Radiother Oncol, 114, 80–85, 2015.
  • [10] The International Commission on Radiation Units and Measurements. Prescribing, Recording, and Reporting Photon - Beam Intensity - Modulated Radiation Therapy (IMRT), ICRU Report 83. ICRU 2010.
  • [11] L. Feuvret, G. Noël, J. J. Mazeron, and P. Bey, “Conformity index: areview,”Int. J. Radiat. Oncol. Biol. Phys., 64 (2), 333–342, 2006.
  • [12] A. Van’t Riet, A. Mak, and M. Moerland, “A conformationnumber to quantify the degree of conformality inbrachytherapy and external beam irradiation,”Int. J. Radiat. Oncol. Biol. Phys., 37, 731–763, 1997.
  • [13] A. E. Karaoguz, Z. A. Alıcıkus, D. Akcay, H. Ellidokuz, and K. Akgungor,“Which one is the better radiotherapy technique for patients with Thoracic Esophageal Tumors, IMRT or VMAT?” Inter. J. Hemot. Oncol., 4 (27), 244-252, 2017.
  • [14] A. Konski, T. Li, M. Christensen, J. D. Cheng, J. Q. Yu, and K. Crawford, “Symptomatic cardiac toxicity is predicted by dosimetric and patient factors rather than changes in 18F-FDG PET determination of myocardial activity after chemoradiotherapy for esophageal cancer,” Radiother. Oncol., 104, 72–77, 2012.
  • [15] M. K. Martel, W. M. Sahijdak, and R. K. Ten Haken,“Fraction size and dose parameters related to the incidence of pericardial effusions,” Int. J. Radiat. Oncol. Biol. Phys., 40, 155–161, 1998.
  • [16] X. Wei, H. H. Liu, and S. L. Tucker, “Risk factors for pericardial effusion in inoperable esophageal cancer patients treated with definitive chemoradiation therapy,” Int. J. Radiat. Oncol. Biol. Phys., 70, 707–714, 2008
  • [17] J. D. Bradley, R. Paulus, and R. Komaki,“ Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study,”The Lancet Oncol, 16 (2), 187–199, 2015.
  • [18] G. Gagliardi, L. S. Constine, and V. Moiseenko,“ Radiation dose-volume effects in the heart,” Int. J. Radiat. Oncol. Biol. Phys., 76, 77–85, 2010.
  • [19] S. K. Das, A. H. Baydush, and S. Zhou, “Predicting radiotherapy-induced cardiac perfusion defects,” Med. Phys., 32 (1), 19–27, 2005.
  • [20] L. Tucker, H. Liu, and S. Wang,”Dose–volume modeling of the risk of post operative pulmonary complications among esophageal cancer patients treated with concurrent chemo-radiotherapy followed by surgery,” Int. J. Radiat. Oncol. Biol Phys., 66, 754-761, 2006.
  • [21] J. M. Schallenkamp, R. C. Miller, and D. H. Brinkmann, “Incidence of radiation pneumonitis after thoracic irradiation: Dose–volume correlates,” Int. J. Radiat. Oncol. Biol. Phys., 67, 410-416, 2007.
  • [22] M. V. Graham, J. A. Purdy, and B. Emami, “Clinical dose–volume histogram analysis for pneumonitis after 3D treatment for non–small cell lung cancer (NSCLC),” Int. J. Radiat. Oncol. Biol. Phys., 45, 323-329, 1999.
  • [23] K. Tsujino, S. Hirota, and M. Endo, “Predictive value of dose– volume histogram parameters for predicting radiation pneu¬monitis after concurrent chemoradiation for lung cancer,” Int. J. Radiat. Oncol. Biol. Phys., 55, 110-115, 2003.
  • [24] E. D. Yorke, A. Jackson, and K. E. Rosenzweig, ”Correlation of dosimetric factors and radiation pneumonitis for non–small cell lung cancer patients in a recently completed dose escalation study,” Int. J. Radiat. Oncol. Biol. Phys., 63, 672-682, 2005.
There are 24 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Murat Okutan 0000-0002-2276-631X

Şeyda Uyanık This is me 0000-0001-7560-734X

Canan Köksal This is me 0000-0001-6429-5272

Evren Göksel This is me 0000-0002-0674-1016

Şule Karaman This is me 0000-0002-4810-4453

Yunus Akpınar This is me 0000-0001-5216-6289

Nergiz Dağoğlu This is me

Bayram Demir 0000-0001-6815-6384

Publication Date May 31, 2020
Published in Issue Year 2020 Volume: 15 Issue: 1

Cite

IEEE M. Okutan, Ş. Uyanık, C. Köksal, E. Göksel, Ş. Karaman, Y. Akpınar, N. Dağoğlu, and B. Demir, “Dosimetric Comparison of 3D-CRT, IMRT, IMAT and Helical Tomotherapy for Thoracic Esophageal Carcinoma”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 15, no. 1, pp. 130–139, 2020, doi: 10.29233/sdufeffd.698994.