First-Principles Study on Magnetic Nature and Electronic Behavior of Silver-Based Sulfide: Ag3MnS4
Year 2020,
Volume: 15 Issue: 2, 203 - 212, 29.11.2020
Aytaç Erkişi
,
Gokhan Surucu
Abstract
This investigation is about the electronic and magnetic character of the ternary silver-based sulfide (Ag3MnS4) crystallized in sulvanite type crystal structure with space group P4 ̅3m and space number 215. The mentioned characteristics has been examined by Generalized Gradient Approximation (GGA) with spin effect under Density Functional Theory (DFT). Four different magnetic phases have been considered to investigate the proper magnetic order for this system. As a result of calculations, it has been understood that, for Ag3MnS4 compound, the energetically most favored magnetic order is A-type antiferromagnetic. After the well-optimized structural parameters and relaxed atomic positions in its suitable magnetic order have been obtained, the electronic characteristic of this antiferromagnet system indicating semiconducting behavior due to the observed a small direct band gap (Eg = 0.325 eV) in both spin states, has been investigated. Also, this compound has thermodynamic stability and structural synthesizability due to its calculated negative formation energy values for all different type magnetic phases.
References
- F. J. Disalvo, “Solid-state chemistry: a a rediscovered chemical frontier,” Science, 247, 649–655, 1990.
- F. J. Disalvo, “Solid-state chemistry: a a rediscovered chemical frontier,” Science, 247, 649–655, 1990.
- H. Nakanishi, S. Endo and I. Taizo, “On the Electrical and Thermal Properties of the Ternary Chalcogenides A2IBIVX3, AIBVX2 and A3IBVX4 (AI=Cu; BIV=Ge, Sn; BV=Sb; X=S, Se, Te) II. Electrical and Thermal Properties of Cu3SbSe4,” Jpn. J. Appl. Phys., 8, 443-449, 1969.
- H. Nakanishi, S. Endo and I. Taizo, “On the Electrical and Thermal Properties of the Ternary Chalcogenides A2IBIVX3, AIBVX2 and A3IBVX4 (AI=Cu; BIV=Ge, Sn; BV=Sb; X=S, Se, Te) II. Electrical and Thermal Properties of Cu3SbSe4,” Jpn. J. Appl. Phys., 8, 443-449, 1969.
- J. Li, H.Y. Guo, D.M. Proserpio, A. Sironi, “Exploring Tellurides: Synthesis and Characterization of New Binary, Ternary, and Quaternary Compounds,” J. Solid State Chem., 117, 247-255, 1995.
- J. Li, H.Y. Guo, D.M. Proserpio, A. Sironi, “Exploring Tellurides: Synthesis and Characterization of New Binary, Ternary, and Quaternary Compounds,” J. Solid State Chem., 117, 247-255, 1995.
- R. W. Miles, G. Zoppi and I. Forbes, “Inorganic photovoltaic cells,” Mater. Today, 10, 20–27, 2007.
- R. W. Miles, G. Zoppi and I. Forbes, “Inorganic photovoltaic cells,” Mater. Today, 10, 20–27, 2007.
- E. J. Skoug, J. D. Cain and D. T. Morelli, “Structural effects on the lattice thermal conductivity of ternary antimony- and bismuth-containing chalcogenide semiconductors,” Appl. Phys. Lett., 96, 181905, 2010.
- E. J. Skoug, J. D. Cain and D. T. Morelli, “Structural effects on the lattice thermal conductivity of ternary antimony- and bismuth-containing chalcogenide semiconductors,” Appl. Phys. Lett., 96, 181905, 2010.
- D. J. Temple, A. B. Kehoe, J. P. Allen, G. W. Watson and D. O. Scanlon, Geometry, “Electronic Structure, and Bonding in CuMCh2(M = Sb, Bi; Ch = S, Se): Alternative Solar Cell Absorber Materials,” J. Phys. Chem. C, 116, 7334–7340, 2012.
- D. J. Temple, A. B. Kehoe, J. P. Allen, G. W. Watson and D. O. Scanlon, Geometry, “Electronic Structure, and Bonding in CuMCh2(M = Sb, Bi; Ch = S, Se): Alternative Solar Cell Absorber Materials,” J. Phys. Chem. C, 116, 7334–7340, 2012.
- H. Katagiri, “Cu2ZnSnS4 thin film solar cells,” Thin Solid Films, 480-481, 426–432, 2005.
- H. Katagiri, “Cu2ZnSnS4 thin film solar cells,” Thin Solid Films, 480-481, 426–432, 2005.
- S. Y. Chen, A. Walsh, J. H. Yang, X. G. Gong, L. Sun, P. X. Yang, J. H. Chu and S. H. Wei, “Compositional dependence of structural and electronic properties of Cu2ZnSn(S,Se)4 alloys for thin film solar cells,” Phys. Rev. B, 83, 125201, 2011.
- S. Y. Chen, A. Walsh, J. H. Yang, X. G. Gong, L. Sun, P. X. Yang, J. H. Chu and S. H. Wei, “Compositional dependence of structural and electronic properties of Cu2ZnSn(S,Se)4 alloys for thin film solar cells,” Phys. Rev. B, 83, 125201, 2011.
- R. Nitsche, P. Wild, “Crystal Growth and Electro-optic Effect of Copper-Tantalum-Selenide, Cu3TaSe4,” J. Appl. Phys., 38, 5413-5414, 1967.
- R. Nitsche, P. Wild, “Crystal Growth and Electro-optic Effect of Copper-Tantalum-Selenide, Cu3TaSe4,” J. Appl. Phys., 38, 5413-5414, 1967.
- F. Zwick, H. Berger, M. Grioni, G. Margaritondo, L. Forro, J. La Veigne, D.B. Tanner, M. Onellion, “Coexisting one-dimensional and three-dimensional spectral signatures in TaTe4,” Phys. Rev. B, 59, 7762-7766, 1999.
- F. Zwick, H. Berger, M. Grioni, G. Margaritondo, L. Forro, J. La Veigne, D.B. Tanner, M. Onellion, “Coexisting one-dimensional and three-dimensional spectral signatures in TaTe4,” Phys. Rev. B, 59, 7762-7766, 1999.
- N. Shannon, R. Joynt, “The spectral, structural and transport properties of the pseudogap system (TaSe4)2I,” Solid State Commun., 115, 411-415, 2000.
- N. Shannon, R. Joynt, “The spectral, structural and transport properties of the pseudogap system (TaSe4)2I,” Solid State Commun., 115, 411-415, 2000.
- M.L. Doublet, S. Remy, F. Lemoigno, “Density functional theory analysis of the local chemical bonds in the periodic tantalum dichalcogenides TaX2 (X = S, Se, Te),” J. Chem. Phys., 113, 5879-5890, 2000.
- M.L. Doublet, S. Remy, F. Lemoigno, “Density functional theory analysis of the local chemical bonds in the periodic tantalum dichalcogenides TaX2 (X = S, Se, Te),” J. Chem. Phys., 113, 5879-5890, 2000.
- S. Debus, B. Harbrecht, “NbxTa7−xS2 (x = 2.73), a structurally distinct (Nb,Ta)-rich sulfide obtaining its stability from the dissimilar cohesive energy of the two metals,” J. Alloys Compd., 338, 253-260, 2002.
- S. Debus, B. Harbrecht, “NbxTa7−xS2 (x = 2.73), a structurally distinct (Nb,Ta)-rich sulfide obtaining its stability from the dissimilar cohesive energy of the two metals,” J. Alloys Compd., 338, 253-260, 2002.
- Y. Aiura, H. Bando, R. Kitagawa, S. Maruyama, Y. Nishihara, K. Horiba, M. Oshima, O. Shiino, M. Nakatake, “Electronic structure of layered 1T – TaSe2 in commensurate charge-density-wave phase studied by angle-resolved photoemission spectroscopy,” Phys. Rev. B, 68, 073408, 2003.
- Y. Aiura, H. Bando, R. Kitagawa, S. Maruyama, Y. Nishihara, K. Horiba, M. Oshima, O. Shiino, M. Nakatake, “Electronic structure of layered 1T – TaSe2 in commensurate charge-density-wave phase studied by angle-resolved photoemission spectroscopy,” Phys. Rev. B, 68, 073408, 2003.
- K.O. Klepp, D. Gurtner, “Crystal structure of tricopper tetraselenidovanadate (V), Cu3VSe4,” Z. Krystallogr. NCS, 215, 4, 2000.
- K.O. Klepp, D. Gurtner, “Crystal structure of tricopper tetraselenidovanadate (V), Cu3VSe4,” Z. Krystallogr. NCS, 215, 4, 2000.
- M. Kars, A. Rebbah, H. Rebbah, “Cu3NbS4,” Acta Cryst., E61, i180-i181, 2005.
- M. Kars, A. Rebbah, H. Rebbah, “Cu3NbS4,” Acta Cryst., E61, i180-i181, 2005.
- Y.J. Lu, J.A. Ibers, “Synthesis and Characterization of Cu3NbSe4 and KCu2TaSe4,” J. Solid State Chem., 107, 58-62, 1993.
- Y.J. Lu, J.A. Ibers, “Synthesis and Characterization of Cu3NbSe4 and KCu2TaSe4,” J. Solid State Chem., 107, 58-62, 1993.
- G.E. Delgado, A.J. Mora, S. Durán, M. Munoz, P. Grima-Gallardo, “Structural characterization of the ternary compound Cu3TaSe4,” J. Alloys Compd., 439, 346-349, 2007.
- G.E. Delgado, A.J. Mora, S. Durán, M. Munoz, P. Grima-Gallardo, “Structural characterization of the ternary compound Cu3TaSe4,” J. Alloys Compd., 439, 346-349, 2007.
- A. Erkisi and G. Surucu, “The electronic and elasticity properties of new half-metallic chalcogenides Cu3TMCh4 (TM = Cr, Fe and Ch = S, Se, Te): an ab initio study,” Philos. Mag., 99, 513-529, 2019.
- A. Erkisi and G. Surucu, “The electronic and elasticity properties of new half-metallic chalcogenides Cu3TMCh4 (TM = Cr, Fe and Ch = S, Se, Te): an ab initio study,” Philos. Mag., 99, 513-529, 2019.
- A. Erkisi, “Magnetic orders and electronic behaviours of new chalcogenides Cu3MnCh4 (Ch = S, Se and Te): An ab initio study,” Philos. Mag., 99, 1941-1955, 2019.
- A. Erkisi, “Magnetic orders and electronic behaviours of new chalcogenides Cu3MnCh4 (Ch = S, Se and Te): An ab initio study,” Philos. Mag., 99, 1941-1955, 2019.
- L. Pauling, R. Hultgren, “The Crystal Structure of Sulvanite, Cu3VS4,” Z. Kristallogr., 84, 204-212, 1932.
- L. Pauling, R. Hultgren, “The Crystal Structure of Sulvanite, Cu3VS4,” Z. Kristallogr., 84, 204-212, 1932.
- C. Mujica, G. Carvajal, J. Llanos, O. Wittke, “Redetermination of the crystal structure of copper(I) tetrathiovanadate (sulvanite), Cu3VS4,” Z. Kristallogr. NCS, 213, 12, 1998.
- C. Mujica, G. Carvajal, J. Llanos, O. Wittke, “Redetermination of the crystal structure of copper(I) tetrathiovanadate (sulvanite), Cu3VS4,” Z. Kristallogr. NCS, 213, 12, 1998.
- K. Nakamura, Y. Kato, T. Akiyama, T. Ito, and A. J. Freeman, “Half-Metallic Exchange Bias Ferromagnetic/Antiferromagnetic Interfaces in Transition-Metal Chalcogenides,” Phys. Rev. Lett., 96, 047206, 2006.
- K. Nakamura, Y. Kato, T. Akiyama, T. Ito, and A. J. Freeman, “Half-Metallic Exchange Bias Ferromagnetic/Antiferromagnetic Interfaces in Transition-Metal Chalcogenides,” Phys. Rev. Lett., 96, 047206, 2006.
- K. Nakamura, T. Akiyama, T. Ito, and A. J. Freeman, “Magnetic structures and half-metallicity at zincblende ferromagnetic/antiferromagnetic interfaces: Role of tetragonal distortions,” J. Magn. Magn. Mater., 310, 2186–2188, 2007.
- K. Nakamura, T. Akiyama, T. Ito, and A. J. Freeman, “Magnetic structures and half-metallicity at zincblende ferromagnetic/antiferromagnetic interfaces: Role of tetragonal distortions,” J. Magn. Magn. Mater., 310, 2186–2188, 2007.
- K. Nakamura, T. Akiyama, T. Ito, and A.J. Freeman, “Half-metallicity at ferromagnetic/antiferromagnetic interfaces in zincblende transition-metal chalcogenides: A full-potential linearized augmented plane-wave study within LDA+U,” J. Appl. Phys., 103, 07C901, 2008.
- K. Nakamura, T. Akiyama, T. Ito, and A.J. Freeman, “Half-metallicity at ferromagnetic/antiferromagnetic interfaces in zincblende transition-metal chalcogenides: A full-potential linearized augmented plane-wave study within LDA+U,” J. Appl. Phys., 103, 07C901, 2008.
- I. Han, Z. Jianga, C. dela Cruz, H. Zhang, H. Sheng, A. Bhutani, D. J. Miller, D. P. Shoemaker, “Accessing magnetic chalcogenides with solvothermal synthesis: KFeS2 and KFe2S3,” J. Solid State Chem., 260, 1–6, 2018.
- I. Han, Z. Jianga, C. dela Cruz, H. Zhang, H. Sheng, A. Bhutani, D. J. Miller, D. P. Shoemaker, “Accessing magnetic chalcogenides with solvothermal synthesis: KFeS2 and KFe2S3,” J. Solid State Chem., 260, 1–6, 2018.
- M. Zhou, W. Yin, F. Liang, A. Mar, Z. Lin, J. Yao, and Y. Wu, “Na2MnGe2Se6: a new Mn-based antiferromagnetic chalcogenide with large Mn…Mn separation,” J. Mater. Chem. C, 4, 10812, 2016.
- M. Zhou, W. Yin, F. Liang, A. Mar, Z. Lin, J. Yao, and Y. Wu, “Na2MnGe2Se6: a new Mn-based antiferromagnetic chalcogenide with large Mn…Mn separation,” J. Mater. Chem. C, 4, 10812, 2016.
- K. Feng, W. Wang, R. He, L. Kang, W. Yin, Z. Lin, J. Yao, Y. Shi, and Y. Wu, “K2FeGe3Se8: A New Antiferromagnetic Iron Selenide,” Inorg. Chem., 52, 2022−2028, 2013.
- K. Feng, W. Wang, R. He, L. Kang, W. Yin, Z. Lin, J. Yao, Y. Shi, and Y. Wu, “K2FeGe3Se8: A New Antiferromagnetic Iron Selenide,” Inorg. Chem., 52, 2022−2028, 2013.
- A.B. Kehoe, D.J. Temple, G.W. Watson and D.O. Scanlon, “Cu3MCh3 (M = Sb, Bi; Ch = S, Se) as candidate solar cell absorbers: insights from theory,” Phys.Chem. Chem. Phys., 15, 15477-15484, 2013.
- A.B. Kehoe, D.J. Temple, G.W. Watson and D.O. Scanlon, “Cu3MCh3 (M = Sb, Bi; Ch = S, Se) as candidate solar cell absorbers: insights from theory,” Phys.Chem. Chem. Phys., 15, 15477-15484, 2013.
- A. Erkisi, B. Yildiz, K. Demir, G. Surucu, “First principles study on new half-metallic ferromagnetic ternary zincbased sulfide and telluride (Zn3VS4 and Zn3VTe4),” Mater. Res. Express, 6, 076107, 2019.
- A. Erkisi, B. Yildiz, K. Demir, G. Surucu, “First principles study on new half-metallic ferromagnetic ternary zincbased sulfide and telluride (Zn3VS4 and Zn3VTe4),” Mater. Res. Express, 6, 076107, 2019.
- G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B, 47, 558–561, 1993.
- G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B, 47, 558–561, 1993.
- G. Kresse and J. Furthmuller, “Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci., 6, 15–50, 1996.
- G. Kresse and J. Furthmuller, “Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci., 6, 15–50, 1996.
- P.E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B, 50, 17953-17979, 1994.
- P.E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B, 50, 17953-17979, 1994.
- W. Kohn and L.J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. A, 140, A1133-A1138, 1965.
- W. Kohn and L.J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. A, 140, A1133-A1138, 1965.
- P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev., 136, B864-B871, 1964.
- P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev., 136, B864-B871, 1964.
- J.P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett. 77, 3865-3868, 1996.
- J.P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett. 77, 3865-3868, 1996.
- H.J. Monkhorst and J.D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, 13, 5188-5192, 1976.
- H.J. Monkhorst and J.D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, 13, 5188-5192, 1976.
- R. W. G. Wyckoff, Analytical Expression of the Results of the theory of space-groups. Washington: Carnegie Institution, 1922, ch. 2.
- R. W. G. Wyckoff, Analytical Expression of the Results of the theory of space-groups. Washington: Carnegie Institution, 1922, ch. 2.
- F. Han, A Modern Course in the Quantum Theory of Solids. Singapore: World Scientific Publishing Co. Pte. Ltd., 2013, pp. 378-379.
- F. Han, A Modern Course in the Quantum Theory of Solids. Singapore: World Scientific Publishing Co. Pte. Ltd., 2013, pp. 378-379.
- E. Zhao and Z. Wu, “Electronic and mechanical properties of 5d transition metal mononitrides via first principles,” J. Solid State Chem., 181, 2814–2827, 2008.
- E. Zhao and Z. Wu, “Electronic and mechanical properties of 5d transition metal mononitrides via first principles,” J. Solid State Chem., 181, 2814–2827, 2008.
- P. Vinet , J.H. Rose, J. Ferrante, and J.R. Smith, “Universal Features of the Equation of State of Solids,” J. Phys.: Condens. Matter, 1, 1941, 1969.
- P. Vinet , J.H. Rose, J. Ferrante, and J.R. Smith, “Universal Features of the Equation of State of Solids,” J. Phys.: Condens. Matter, 1, 1941, 1969.
- M. B. Jungfleisch, W. Zhang, A. Hoffmann, “Perspectives of antiferromagnetic spintronics,” Phys. Lett. A, 382, 865–871, 2018.
- M. B. Jungfleisch, W. Zhang, A. Hoffmann, “Perspectives of antiferromagnetic spintronics,” Phys. Lett. A, 382, 865–871, 2018.
- Y. Y. Wang, C. Song, J. Y. Zhang, F. Pan, “Spintronic materials and devices based on antiferromagnetic metals,” Prog. Nat. Sci-Mater, 27, 208–216, 2017.
- Y. Y. Wang, C. Song, J. Y. Zhang, F. Pan, “Spintronic materials and devices based on antiferromagnetic metals,” Prog. Nat. Sci-Mater, 27, 208–216, 2017.
Gümüş-Tabanlı Sülfürün Manyetik Doğası ve Elektronik Davranışı Üzerine İlk-İlkeler Çalışması: Ag3MnS4
Year 2020,
Volume: 15 Issue: 2, 203 - 212, 29.11.2020
Aytaç Erkişi
,
Gokhan Surucu
Abstract
Bu araştırma, boşluk grubu P4 ̅3m ve boşluk sayısı 215 ile sülvanit tipi kristal yapısında kristalize olan üçlü gümüş bazlı sülfidin (Ag3MnS4) elektronik ve manyetik karakteri ile ilgilidir. Bahsedilen özellikler Yoğunluk Fonksiyonel Teorisi (YFT) altında spin etkisi ile Genelleştirilmiş Gradyan Yaklaşımı (GGY) ile incelenmiştir. Bu sistem için uygun manyetik düzeni araştırmak için dört farklı manyetik faz düşünülmüştür. Hesaplamaların bir sonucu olarak, Ag3MnS4 bileşiği için, enerjisel olarak en çok tercih edilen manyetik düzenin A-tipi antiferromanyetik olduğu anlaşılmıştır. İyi optimize edilmiş yapısal parametreler ve uygun manyetik düzendeki relax edilen atomik pozisyonlar elde edildikten sonra, her iki spin durumunda da küçük bir direkt bant boşluğunun (Eb = 0.325 eV) gözlenmesi nedeniyle yarı iletken davranış gösteren bu antiferromanyetik sistemin elektronik özelliği araştırılmıştır. Ayrıca, bu bileşik, tüm farklı tip manyetik fazlar için hesaplanan negatif oluşum enerji değerleri nedeniyle termodinamik kararlılığa ve yapısal sentezlenebilirliğe sahiptir.
References
- F. J. Disalvo, “Solid-state chemistry: a a rediscovered chemical frontier,” Science, 247, 649–655, 1990.
- F. J. Disalvo, “Solid-state chemistry: a a rediscovered chemical frontier,” Science, 247, 649–655, 1990.
- H. Nakanishi, S. Endo and I. Taizo, “On the Electrical and Thermal Properties of the Ternary Chalcogenides A2IBIVX3, AIBVX2 and A3IBVX4 (AI=Cu; BIV=Ge, Sn; BV=Sb; X=S, Se, Te) II. Electrical and Thermal Properties of Cu3SbSe4,” Jpn. J. Appl. Phys., 8, 443-449, 1969.
- H. Nakanishi, S. Endo and I. Taizo, “On the Electrical and Thermal Properties of the Ternary Chalcogenides A2IBIVX3, AIBVX2 and A3IBVX4 (AI=Cu; BIV=Ge, Sn; BV=Sb; X=S, Se, Te) II. Electrical and Thermal Properties of Cu3SbSe4,” Jpn. J. Appl. Phys., 8, 443-449, 1969.
- J. Li, H.Y. Guo, D.M. Proserpio, A. Sironi, “Exploring Tellurides: Synthesis and Characterization of New Binary, Ternary, and Quaternary Compounds,” J. Solid State Chem., 117, 247-255, 1995.
- J. Li, H.Y. Guo, D.M. Proserpio, A. Sironi, “Exploring Tellurides: Synthesis and Characterization of New Binary, Ternary, and Quaternary Compounds,” J. Solid State Chem., 117, 247-255, 1995.
- R. W. Miles, G. Zoppi and I. Forbes, “Inorganic photovoltaic cells,” Mater. Today, 10, 20–27, 2007.
- R. W. Miles, G. Zoppi and I. Forbes, “Inorganic photovoltaic cells,” Mater. Today, 10, 20–27, 2007.
- E. J. Skoug, J. D. Cain and D. T. Morelli, “Structural effects on the lattice thermal conductivity of ternary antimony- and bismuth-containing chalcogenide semiconductors,” Appl. Phys. Lett., 96, 181905, 2010.
- E. J. Skoug, J. D. Cain and D. T. Morelli, “Structural effects on the lattice thermal conductivity of ternary antimony- and bismuth-containing chalcogenide semiconductors,” Appl. Phys. Lett., 96, 181905, 2010.
- D. J. Temple, A. B. Kehoe, J. P. Allen, G. W. Watson and D. O. Scanlon, Geometry, “Electronic Structure, and Bonding in CuMCh2(M = Sb, Bi; Ch = S, Se): Alternative Solar Cell Absorber Materials,” J. Phys. Chem. C, 116, 7334–7340, 2012.
- D. J. Temple, A. B. Kehoe, J. P. Allen, G. W. Watson and D. O. Scanlon, Geometry, “Electronic Structure, and Bonding in CuMCh2(M = Sb, Bi; Ch = S, Se): Alternative Solar Cell Absorber Materials,” J. Phys. Chem. C, 116, 7334–7340, 2012.
- H. Katagiri, “Cu2ZnSnS4 thin film solar cells,” Thin Solid Films, 480-481, 426–432, 2005.
- H. Katagiri, “Cu2ZnSnS4 thin film solar cells,” Thin Solid Films, 480-481, 426–432, 2005.
- S. Y. Chen, A. Walsh, J. H. Yang, X. G. Gong, L. Sun, P. X. Yang, J. H. Chu and S. H. Wei, “Compositional dependence of structural and electronic properties of Cu2ZnSn(S,Se)4 alloys for thin film solar cells,” Phys. Rev. B, 83, 125201, 2011.
- S. Y. Chen, A. Walsh, J. H. Yang, X. G. Gong, L. Sun, P. X. Yang, J. H. Chu and S. H. Wei, “Compositional dependence of structural and electronic properties of Cu2ZnSn(S,Se)4 alloys for thin film solar cells,” Phys. Rev. B, 83, 125201, 2011.
- R. Nitsche, P. Wild, “Crystal Growth and Electro-optic Effect of Copper-Tantalum-Selenide, Cu3TaSe4,” J. Appl. Phys., 38, 5413-5414, 1967.
- R. Nitsche, P. Wild, “Crystal Growth and Electro-optic Effect of Copper-Tantalum-Selenide, Cu3TaSe4,” J. Appl. Phys., 38, 5413-5414, 1967.
- F. Zwick, H. Berger, M. Grioni, G. Margaritondo, L. Forro, J. La Veigne, D.B. Tanner, M. Onellion, “Coexisting one-dimensional and three-dimensional spectral signatures in TaTe4,” Phys. Rev. B, 59, 7762-7766, 1999.
- F. Zwick, H. Berger, M. Grioni, G. Margaritondo, L. Forro, J. La Veigne, D.B. Tanner, M. Onellion, “Coexisting one-dimensional and three-dimensional spectral signatures in TaTe4,” Phys. Rev. B, 59, 7762-7766, 1999.
- N. Shannon, R. Joynt, “The spectral, structural and transport properties of the pseudogap system (TaSe4)2I,” Solid State Commun., 115, 411-415, 2000.
- N. Shannon, R. Joynt, “The spectral, structural and transport properties of the pseudogap system (TaSe4)2I,” Solid State Commun., 115, 411-415, 2000.
- M.L. Doublet, S. Remy, F. Lemoigno, “Density functional theory analysis of the local chemical bonds in the periodic tantalum dichalcogenides TaX2 (X = S, Se, Te),” J. Chem. Phys., 113, 5879-5890, 2000.
- M.L. Doublet, S. Remy, F. Lemoigno, “Density functional theory analysis of the local chemical bonds in the periodic tantalum dichalcogenides TaX2 (X = S, Se, Te),” J. Chem. Phys., 113, 5879-5890, 2000.
- S. Debus, B. Harbrecht, “NbxTa7−xS2 (x = 2.73), a structurally distinct (Nb,Ta)-rich sulfide obtaining its stability from the dissimilar cohesive energy of the two metals,” J. Alloys Compd., 338, 253-260, 2002.
- S. Debus, B. Harbrecht, “NbxTa7−xS2 (x = 2.73), a structurally distinct (Nb,Ta)-rich sulfide obtaining its stability from the dissimilar cohesive energy of the two metals,” J. Alloys Compd., 338, 253-260, 2002.
- Y. Aiura, H. Bando, R. Kitagawa, S. Maruyama, Y. Nishihara, K. Horiba, M. Oshima, O. Shiino, M. Nakatake, “Electronic structure of layered 1T – TaSe2 in commensurate charge-density-wave phase studied by angle-resolved photoemission spectroscopy,” Phys. Rev. B, 68, 073408, 2003.
- Y. Aiura, H. Bando, R. Kitagawa, S. Maruyama, Y. Nishihara, K. Horiba, M. Oshima, O. Shiino, M. Nakatake, “Electronic structure of layered 1T – TaSe2 in commensurate charge-density-wave phase studied by angle-resolved photoemission spectroscopy,” Phys. Rev. B, 68, 073408, 2003.
- K.O. Klepp, D. Gurtner, “Crystal structure of tricopper tetraselenidovanadate (V), Cu3VSe4,” Z. Krystallogr. NCS, 215, 4, 2000.
- K.O. Klepp, D. Gurtner, “Crystal structure of tricopper tetraselenidovanadate (V), Cu3VSe4,” Z. Krystallogr. NCS, 215, 4, 2000.
- M. Kars, A. Rebbah, H. Rebbah, “Cu3NbS4,” Acta Cryst., E61, i180-i181, 2005.
- M. Kars, A. Rebbah, H. Rebbah, “Cu3NbS4,” Acta Cryst., E61, i180-i181, 2005.
- Y.J. Lu, J.A. Ibers, “Synthesis and Characterization of Cu3NbSe4 and KCu2TaSe4,” J. Solid State Chem., 107, 58-62, 1993.
- Y.J. Lu, J.A. Ibers, “Synthesis and Characterization of Cu3NbSe4 and KCu2TaSe4,” J. Solid State Chem., 107, 58-62, 1993.
- G.E. Delgado, A.J. Mora, S. Durán, M. Munoz, P. Grima-Gallardo, “Structural characterization of the ternary compound Cu3TaSe4,” J. Alloys Compd., 439, 346-349, 2007.
- G.E. Delgado, A.J. Mora, S. Durán, M. Munoz, P. Grima-Gallardo, “Structural characterization of the ternary compound Cu3TaSe4,” J. Alloys Compd., 439, 346-349, 2007.
- A. Erkisi and G. Surucu, “The electronic and elasticity properties of new half-metallic chalcogenides Cu3TMCh4 (TM = Cr, Fe and Ch = S, Se, Te): an ab initio study,” Philos. Mag., 99, 513-529, 2019.
- A. Erkisi and G. Surucu, “The electronic and elasticity properties of new half-metallic chalcogenides Cu3TMCh4 (TM = Cr, Fe and Ch = S, Se, Te): an ab initio study,” Philos. Mag., 99, 513-529, 2019.
- A. Erkisi, “Magnetic orders and electronic behaviours of new chalcogenides Cu3MnCh4 (Ch = S, Se and Te): An ab initio study,” Philos. Mag., 99, 1941-1955, 2019.
- A. Erkisi, “Magnetic orders and electronic behaviours of new chalcogenides Cu3MnCh4 (Ch = S, Se and Te): An ab initio study,” Philos. Mag., 99, 1941-1955, 2019.
- L. Pauling, R. Hultgren, “The Crystal Structure of Sulvanite, Cu3VS4,” Z. Kristallogr., 84, 204-212, 1932.
- L. Pauling, R. Hultgren, “The Crystal Structure of Sulvanite, Cu3VS4,” Z. Kristallogr., 84, 204-212, 1932.
- C. Mujica, G. Carvajal, J. Llanos, O. Wittke, “Redetermination of the crystal structure of copper(I) tetrathiovanadate (sulvanite), Cu3VS4,” Z. Kristallogr. NCS, 213, 12, 1998.
- C. Mujica, G. Carvajal, J. Llanos, O. Wittke, “Redetermination of the crystal structure of copper(I) tetrathiovanadate (sulvanite), Cu3VS4,” Z. Kristallogr. NCS, 213, 12, 1998.
- K. Nakamura, Y. Kato, T. Akiyama, T. Ito, and A. J. Freeman, “Half-Metallic Exchange Bias Ferromagnetic/Antiferromagnetic Interfaces in Transition-Metal Chalcogenides,” Phys. Rev. Lett., 96, 047206, 2006.
- K. Nakamura, Y. Kato, T. Akiyama, T. Ito, and A. J. Freeman, “Half-Metallic Exchange Bias Ferromagnetic/Antiferromagnetic Interfaces in Transition-Metal Chalcogenides,” Phys. Rev. Lett., 96, 047206, 2006.
- K. Nakamura, T. Akiyama, T. Ito, and A. J. Freeman, “Magnetic structures and half-metallicity at zincblende ferromagnetic/antiferromagnetic interfaces: Role of tetragonal distortions,” J. Magn. Magn. Mater., 310, 2186–2188, 2007.
- K. Nakamura, T. Akiyama, T. Ito, and A. J. Freeman, “Magnetic structures and half-metallicity at zincblende ferromagnetic/antiferromagnetic interfaces: Role of tetragonal distortions,” J. Magn. Magn. Mater., 310, 2186–2188, 2007.
- K. Nakamura, T. Akiyama, T. Ito, and A.J. Freeman, “Half-metallicity at ferromagnetic/antiferromagnetic interfaces in zincblende transition-metal chalcogenides: A full-potential linearized augmented plane-wave study within LDA+U,” J. Appl. Phys., 103, 07C901, 2008.
- K. Nakamura, T. Akiyama, T. Ito, and A.J. Freeman, “Half-metallicity at ferromagnetic/antiferromagnetic interfaces in zincblende transition-metal chalcogenides: A full-potential linearized augmented plane-wave study within LDA+U,” J. Appl. Phys., 103, 07C901, 2008.
- I. Han, Z. Jianga, C. dela Cruz, H. Zhang, H. Sheng, A. Bhutani, D. J. Miller, D. P. Shoemaker, “Accessing magnetic chalcogenides with solvothermal synthesis: KFeS2 and KFe2S3,” J. Solid State Chem., 260, 1–6, 2018.
- I. Han, Z. Jianga, C. dela Cruz, H. Zhang, H. Sheng, A. Bhutani, D. J. Miller, D. P. Shoemaker, “Accessing magnetic chalcogenides with solvothermal synthesis: KFeS2 and KFe2S3,” J. Solid State Chem., 260, 1–6, 2018.
- M. Zhou, W. Yin, F. Liang, A. Mar, Z. Lin, J. Yao, and Y. Wu, “Na2MnGe2Se6: a new Mn-based antiferromagnetic chalcogenide with large Mn…Mn separation,” J. Mater. Chem. C, 4, 10812, 2016.
- M. Zhou, W. Yin, F. Liang, A. Mar, Z. Lin, J. Yao, and Y. Wu, “Na2MnGe2Se6: a new Mn-based antiferromagnetic chalcogenide with large Mn…Mn separation,” J. Mater. Chem. C, 4, 10812, 2016.
- K. Feng, W. Wang, R. He, L. Kang, W. Yin, Z. Lin, J. Yao, Y. Shi, and Y. Wu, “K2FeGe3Se8: A New Antiferromagnetic Iron Selenide,” Inorg. Chem., 52, 2022−2028, 2013.
- K. Feng, W. Wang, R. He, L. Kang, W. Yin, Z. Lin, J. Yao, Y. Shi, and Y. Wu, “K2FeGe3Se8: A New Antiferromagnetic Iron Selenide,” Inorg. Chem., 52, 2022−2028, 2013.
- A.B. Kehoe, D.J. Temple, G.W. Watson and D.O. Scanlon, “Cu3MCh3 (M = Sb, Bi; Ch = S, Se) as candidate solar cell absorbers: insights from theory,” Phys.Chem. Chem. Phys., 15, 15477-15484, 2013.
- A.B. Kehoe, D.J. Temple, G.W. Watson and D.O. Scanlon, “Cu3MCh3 (M = Sb, Bi; Ch = S, Se) as candidate solar cell absorbers: insights from theory,” Phys.Chem. Chem. Phys., 15, 15477-15484, 2013.
- A. Erkisi, B. Yildiz, K. Demir, G. Surucu, “First principles study on new half-metallic ferromagnetic ternary zincbased sulfide and telluride (Zn3VS4 and Zn3VTe4),” Mater. Res. Express, 6, 076107, 2019.
- A. Erkisi, B. Yildiz, K. Demir, G. Surucu, “First principles study on new half-metallic ferromagnetic ternary zincbased sulfide and telluride (Zn3VS4 and Zn3VTe4),” Mater. Res. Express, 6, 076107, 2019.
- G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B, 47, 558–561, 1993.
- G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B, 47, 558–561, 1993.
- G. Kresse and J. Furthmuller, “Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci., 6, 15–50, 1996.
- G. Kresse and J. Furthmuller, “Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci., 6, 15–50, 1996.
- P.E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B, 50, 17953-17979, 1994.
- P.E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B, 50, 17953-17979, 1994.
- W. Kohn and L.J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. A, 140, A1133-A1138, 1965.
- W. Kohn and L.J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. A, 140, A1133-A1138, 1965.
- P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev., 136, B864-B871, 1964.
- P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev., 136, B864-B871, 1964.
- J.P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett. 77, 3865-3868, 1996.
- J.P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett. 77, 3865-3868, 1996.
- H.J. Monkhorst and J.D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, 13, 5188-5192, 1976.
- H.J. Monkhorst and J.D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, 13, 5188-5192, 1976.
- R. W. G. Wyckoff, Analytical Expression of the Results of the theory of space-groups. Washington: Carnegie Institution, 1922, ch. 2.
- R. W. G. Wyckoff, Analytical Expression of the Results of the theory of space-groups. Washington: Carnegie Institution, 1922, ch. 2.
- F. Han, A Modern Course in the Quantum Theory of Solids. Singapore: World Scientific Publishing Co. Pte. Ltd., 2013, pp. 378-379.
- F. Han, A Modern Course in the Quantum Theory of Solids. Singapore: World Scientific Publishing Co. Pte. Ltd., 2013, pp. 378-379.
- E. Zhao and Z. Wu, “Electronic and mechanical properties of 5d transition metal mononitrides via first principles,” J. Solid State Chem., 181, 2814–2827, 2008.
- E. Zhao and Z. Wu, “Electronic and mechanical properties of 5d transition metal mononitrides via first principles,” J. Solid State Chem., 181, 2814–2827, 2008.
- P. Vinet , J.H. Rose, J. Ferrante, and J.R. Smith, “Universal Features of the Equation of State of Solids,” J. Phys.: Condens. Matter, 1, 1941, 1969.
- P. Vinet , J.H. Rose, J. Ferrante, and J.R. Smith, “Universal Features of the Equation of State of Solids,” J. Phys.: Condens. Matter, 1, 1941, 1969.
- M. B. Jungfleisch, W. Zhang, A. Hoffmann, “Perspectives of antiferromagnetic spintronics,” Phys. Lett. A, 382, 865–871, 2018.
- M. B. Jungfleisch, W. Zhang, A. Hoffmann, “Perspectives of antiferromagnetic spintronics,” Phys. Lett. A, 382, 865–871, 2018.
- Y. Y. Wang, C. Song, J. Y. Zhang, F. Pan, “Spintronic materials and devices based on antiferromagnetic metals,” Prog. Nat. Sci-Mater, 27, 208–216, 2017.
- Y. Y. Wang, C. Song, J. Y. Zhang, F. Pan, “Spintronic materials and devices based on antiferromagnetic metals,” Prog. Nat. Sci-Mater, 27, 208–216, 2017.