Research Article
BibTex RIS Cite

Osmaniye'de Yedi Yıllık Dönemde Yatay Yüzeydeki Global Güneş Radyasyonu Ölçümleri ve Yeni Ampirik Modeller Kullanılarak Global Güneş Radyasyonunun Tahmini

Year 2021, Volume: 16 Issue: 2, 349 - 367, 25.11.2021
https://doi.org/10.29233/sdufeffd.938528

Abstract

Bu çalışmanın iki önemli amaç içermektedir. Birinci amaç, Osmaniye’de (Enlem, = 36.22K, Boylam=37.04D, yükseklik=118m) 8-48 Model Black&White piranometresi kullanılarak 2014-2020 yılları arasında yatay yüzeye gelen toplam yedi yıllık bir süre boyunca ölçülen günlük toplam güneş radyasyonunun saatlik ve aylık ortalama değerlerinin sonuçları verilmiştir. 2014-2020 yılları arasındaki günlük toplam güneş radyasyonunun aylık ortalama değerlerinden, yatay yüzeye gelen yıllık aylık toplam ve ortalama güneş ışınımı sırasıyla 205.01 MJm-2g-1 ve 17.08 MJm-2g-1 olarak hesaplanmıştır. En yüksek aylık global güneş radyasyonu 25.76 MJm-2g-1 ile Haziran ayında elde edilirken, en düşük değerler 7.63 MJm-2g-1 olarak Aralık ayında elde edilmiştir.
İkinci amaç, Osmaniye ili için aylık ortalama güneşlenme süresi (saat), aylık ortalama hava sıcaklığı (°C), en düşük ve en yüksek hava sıcaklıkları (°C), enlem () ve deklinasyon açısı () gibi parametreler kullanılarak aylık olarak yıllık global güneş radyasyonunu tahmin etmek için geliştirilen Angström tipi eşitlikler kullanan yedi regresyon modeli (M1-7) vermektir. 1987-2020 yılları arasını kapsayan meteorolojik parametreler Meteoroloji Genel Müdürlüğü’nden alınmıştır. Osmaniye için geliştirilen bu modeller, Black&White piranometresi ile ölçülen günlük toplam güneş radyasyonunun aylık ortalama değerleri kullanılarak kalibre edilmiştir. Tüm modellerden tahmin edilen aylık ortalama toplam güneş ışınımların performansları R2 RMSE, MBE, MAPE, MPE, MARE ve MAE istatistik yöntemler kullanılarak karşılaştırılmıştır. M3 modeli R2 ve RMSE istatistiksel hata göstergeleri için en iyi performansı gösterirken, M5 modeli MBE, MPE, MAPE, MARE ve MAE için en iyi performans gösteren modeldir. Buna ek olarak, aylık ortalama günlük açıklık endeks (KT) değerleri, ölçülen global güneş radyasyonu (H) için 0.511 ile 0.634, M5 modeli için 0.553 ile 0.621 ve M3 modeli için 0.538 ila 0.611 aralığındadır. Sonuçlar, tahmin edilen ve ölçülen toplam güneş ışınım şiddetinin değerleri arasında oldukça uyumlu olduğunu göstermiştir.

References

  • [1] J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes. (4th ed.), John Wiley and Sons, Inc., New York, 2013.
  • [2] M. Iqbal, An Introduction to Solar Radiation. London: Academic Press, 1983.
  • [3] Q. Schiermeier, J. Tollefson, T. Scully, A. Witze, and O. Morton, “Energy alternatives: Electricity without carbon,” Nature, 454, 816-23, 2008.
  • [4] M. Xiao, Z. Yu, and Y. Cui, “Evaluation and estimation of daily global solar radiation from the estimated direct and diffuse solar radiation,” Theoretical and Applied Climatology, 140, 983–992, 2020.
  • [5] J. Fan, L. Wu, F. Zhang, H. Cai, X. Ma, and H. Bai “Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China,” Renew Sustain Energy Rev., 105, 168–186, 2019.
  • [6] J. Almorox and C. Hontoria, “Global solar radiation estimation using sunshine duration in Spain,” Energy Conversion and Management, 45, 1529–1535, 2004.
  • [7] O. Şenkal and T. Kuleli, “Estimation of solar radiation over Turkey using artificial neural network and satellite data,” Applied Energy, 86, 1222–1228, 2009.
  • [8] O. Şenkal, “Solar radiation modeling for Turkey using atmospheric parameters with artificial neural networks,” Çukurova Üniversitesi Mühendislik-Mimarlik Fakültesi Dergisi, 31 (2), 179-185, 2016.
  • [9] A. Bandyopadhyay, A. Bhadra, N.S. Raghuwanshi, and R. Singh, “Estimation of monthly solar radiation from measured air temperature extremes,” Agricultural and Forest Meteorology, 148, 1707–1718, 2008.
  • [10] G. H. Hargreaves and Z. A. Samani, “Estimating potential evapotranspiration,” J. Irrig. Drain. Eng., 108 (3), 225-230, 1982.
  • [11] M. Şahan, H. Şahan ve İ. Yegingil, “Yıllık toplam ve ultraviole (UV) güneş enerjisi verilerinin ölçülmesi,” Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi,14 (1), 10-16, 2010.
  • [12] M. Şahan, “Measurement of daily solar radiation with Eppley Black and White pyranometer in Osmaniye Region, Turkey”, AIP Conference Proceedings 2018, 2042, pp. 020005-1-0200054, 2018.
  • [13] M. Şahan, Ö. Tokat, ve Y. Okur, “Osmaniye’de günlük toplam güneş ışınım ölçümleri,” SDU Journal of Science, 10 (2), 97-105, 2015.
  • [14] M. Despotovic, V. Nedic, D. Despotovic, and S. Cvetanovic, “Review and statistical analysis of different global solar radiation sunshine models,” Renewable and Sustainable Energy Reviews, 52, 1869–1880, 2015.
  • [15] A. Angström, “Solar and terrestrial radiation,” Quarterly Journal of the Royal Meteorological Society, 50 (210), 121-126, 1924.
  • [16] J. A. Prescott, “Evaporation from a water surface in relation to solar radiation,” Transactions of the Royal Society of South Australia, 64, 114-148, 1940.
  • [17] M. R. Rietveld, “A new method for estimating the regression coefficients in the formula relating solar radiation to sunshine,” Agricult. Meteorol., 19, 243–252, 1978.
  • [18] H. Ogelman, A. Ecevit, and E. Tasdemiroglu, “A new method for estimating solar radiation from bright sunshine data,” Solar Energy, 33, 619–625, 1984.
  • [19] B. G. Akınoglu, A. Ecevit, “A further comparison and discussion of sunshine based models to estimate global solar radiation”, Solar Energy, 15, 865–872, 1990.
  • [20] J. Glover and J. D. G. McGulloch, “The empirical relation between solar radiation and hours of sunshine”, Q. J. Roy. Meteorol. Soc., 84, 172–175, 1958.
  • [21] R. De Jong and D. W. Stewart, “Estimating global solar radiation from common meteorological observations in western Canada,” Can. J. Plant. Sci., 73, 509–518, 1993.
  • [22] K. L. Bristow and G. S. Campbell, “On the relationship between incoming solar radiation and daily maximum and minimum temperature,” Agric. For. Meteorol., 31, 159–166, 1984.
  • [23] S. Klein, “Calculation of monthly average insolation on tilted surfaces,” Solar Energy, 19 (4), 325-329, 1977.
  • [24] J. R. Howell, R. B. Bannerot, and G. C. Vliet, Solar-Thermal Energy Systems Analysis and Design, McGraw-Hill, Inc., New York, 1982.
  • [25] N. Emrahoğlu ve İ. Yeğingil, “Çukurova Üniversitesi’nde ölçülen güneş ışınım verileri analizi,” Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34 (2), 87-96, 2019.
  • [26] https://www.mgm.gov.tr/kurumici/radyasyon_iller.aspx
  • [27] C. Ertekin and O. Yaldiz, “Comparison of some existing models for estimating global solar radiation for Antalya (Turkey),” Energy Convers Mgmt., 41, 311–330, 2000.
  • [28] D. B. Ampratwum and A. S. S. Dorvlo, “Estimation of solar radiation from the number of sunshine hours,” Appl. Energy, 62, 161–167, 1990.

Global Solar Radiation Measurements on the Horizontal Surface in Osmaniye During seven Years Period and Global Solar Radiation Estimation Using New Empirical Models

Year 2021, Volume: 16 Issue: 2, 349 - 367, 25.11.2021
https://doi.org/10.29233/sdufeffd.938528

Abstract

This study has two important purposes. The first purpose is to give the results of hourly and monthly mean values of daily global solar radiation measured at the horizontal surface over a period of seven years from 2014 to 2020 at Osmaniye (latitude: 37.04E, longitude: 36.22N, altitude: 118m), using 8-48 Model Black&White pyranometer. From monthly mean values of daily total solar radiation between the years of 2014-2020, annual monthly total and average solar radiation coming to the horizontal surface was calculated as 205.01 MJm-2g-1 and 17.08 MJm-2g-1, respectively. While the highest monthly global solar radiation was obtained in June to be 25.76 MJm-2g-1, the lowest values were obtained in December to be 7.63 MJm-2g-1.
The second purpose is to give seven regression models (M1-7) which use Angstrom type equations developed to estimate the monthly annual global solar radiation using parameters such as monthly average sunshine duration (hour), monthly average air temperature (°C), lowest and highest air temperatures (°C), latitude () and solar declination angle () for Osmaniye province. Meteorological parameters covering the period 1987-2020 were taken from Turkish State Meteorological Service. These models developed for Osmaniye were calibrated using monthly mean values of measured daily total solar radiation, measuring with Black&White pyranometer. The monthly average total solar radiation performances estimated from the models were compared using statistical methods such as R2, MBE, MAPE, MPE, MARE, and MAE. M3 model shows the best performance for R2 and RMSE statistical error indicators, while M5 model is the best performing model for MBE, MPE, MAPE, MARE and MAE. In addition, the values of the monthly average-daily clearness index (KT) range from 0.511 to 0.634 for measured global solar radiation (H), from 0.553 to 0.621 for M5 model and from 0.538 to 0.611 for M3 model. Results show good agreement between the estimated and measured values of global solar radiation.

References

  • [1] J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes. (4th ed.), John Wiley and Sons, Inc., New York, 2013.
  • [2] M. Iqbal, An Introduction to Solar Radiation. London: Academic Press, 1983.
  • [3] Q. Schiermeier, J. Tollefson, T. Scully, A. Witze, and O. Morton, “Energy alternatives: Electricity without carbon,” Nature, 454, 816-23, 2008.
  • [4] M. Xiao, Z. Yu, and Y. Cui, “Evaluation and estimation of daily global solar radiation from the estimated direct and diffuse solar radiation,” Theoretical and Applied Climatology, 140, 983–992, 2020.
  • [5] J. Fan, L. Wu, F. Zhang, H. Cai, X. Ma, and H. Bai “Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China,” Renew Sustain Energy Rev., 105, 168–186, 2019.
  • [6] J. Almorox and C. Hontoria, “Global solar radiation estimation using sunshine duration in Spain,” Energy Conversion and Management, 45, 1529–1535, 2004.
  • [7] O. Şenkal and T. Kuleli, “Estimation of solar radiation over Turkey using artificial neural network and satellite data,” Applied Energy, 86, 1222–1228, 2009.
  • [8] O. Şenkal, “Solar radiation modeling for Turkey using atmospheric parameters with artificial neural networks,” Çukurova Üniversitesi Mühendislik-Mimarlik Fakültesi Dergisi, 31 (2), 179-185, 2016.
  • [9] A. Bandyopadhyay, A. Bhadra, N.S. Raghuwanshi, and R. Singh, “Estimation of monthly solar radiation from measured air temperature extremes,” Agricultural and Forest Meteorology, 148, 1707–1718, 2008.
  • [10] G. H. Hargreaves and Z. A. Samani, “Estimating potential evapotranspiration,” J. Irrig. Drain. Eng., 108 (3), 225-230, 1982.
  • [11] M. Şahan, H. Şahan ve İ. Yegingil, “Yıllık toplam ve ultraviole (UV) güneş enerjisi verilerinin ölçülmesi,” Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi,14 (1), 10-16, 2010.
  • [12] M. Şahan, “Measurement of daily solar radiation with Eppley Black and White pyranometer in Osmaniye Region, Turkey”, AIP Conference Proceedings 2018, 2042, pp. 020005-1-0200054, 2018.
  • [13] M. Şahan, Ö. Tokat, ve Y. Okur, “Osmaniye’de günlük toplam güneş ışınım ölçümleri,” SDU Journal of Science, 10 (2), 97-105, 2015.
  • [14] M. Despotovic, V. Nedic, D. Despotovic, and S. Cvetanovic, “Review and statistical analysis of different global solar radiation sunshine models,” Renewable and Sustainable Energy Reviews, 52, 1869–1880, 2015.
  • [15] A. Angström, “Solar and terrestrial radiation,” Quarterly Journal of the Royal Meteorological Society, 50 (210), 121-126, 1924.
  • [16] J. A. Prescott, “Evaporation from a water surface in relation to solar radiation,” Transactions of the Royal Society of South Australia, 64, 114-148, 1940.
  • [17] M. R. Rietveld, “A new method for estimating the regression coefficients in the formula relating solar radiation to sunshine,” Agricult. Meteorol., 19, 243–252, 1978.
  • [18] H. Ogelman, A. Ecevit, and E. Tasdemiroglu, “A new method for estimating solar radiation from bright sunshine data,” Solar Energy, 33, 619–625, 1984.
  • [19] B. G. Akınoglu, A. Ecevit, “A further comparison and discussion of sunshine based models to estimate global solar radiation”, Solar Energy, 15, 865–872, 1990.
  • [20] J. Glover and J. D. G. McGulloch, “The empirical relation between solar radiation and hours of sunshine”, Q. J. Roy. Meteorol. Soc., 84, 172–175, 1958.
  • [21] R. De Jong and D. W. Stewart, “Estimating global solar radiation from common meteorological observations in western Canada,” Can. J. Plant. Sci., 73, 509–518, 1993.
  • [22] K. L. Bristow and G. S. Campbell, “On the relationship between incoming solar radiation and daily maximum and minimum temperature,” Agric. For. Meteorol., 31, 159–166, 1984.
  • [23] S. Klein, “Calculation of monthly average insolation on tilted surfaces,” Solar Energy, 19 (4), 325-329, 1977.
  • [24] J. R. Howell, R. B. Bannerot, and G. C. Vliet, Solar-Thermal Energy Systems Analysis and Design, McGraw-Hill, Inc., New York, 1982.
  • [25] N. Emrahoğlu ve İ. Yeğingil, “Çukurova Üniversitesi’nde ölçülen güneş ışınım verileri analizi,” Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34 (2), 87-96, 2019.
  • [26] https://www.mgm.gov.tr/kurumici/radyasyon_iller.aspx
  • [27] C. Ertekin and O. Yaldiz, “Comparison of some existing models for estimating global solar radiation for Antalya (Turkey),” Energy Convers Mgmt., 41, 311–330, 2000.
  • [28] D. B. Ampratwum and A. S. S. Dorvlo, “Estimation of solar radiation from the number of sunshine hours,” Appl. Energy, 62, 161–167, 1990.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Muhittin Şahan 0000-0001-6716-8463

Nuri Emrahaoğlu 0000-0003-4347-5279

Publication Date November 25, 2021
Published in Issue Year 2021 Volume: 16 Issue: 2

Cite

IEEE M. Şahan and N. Emrahaoğlu, “Osmaniye’de Yedi Yıllık Dönemde Yatay Yüzeydeki Global Güneş Radyasyonu Ölçümleri ve Yeni Ampirik Modeller Kullanılarak Global Güneş Radyasyonunun Tahmini”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 16, no. 2, pp. 349–367, 2021, doi: 10.29233/sdufeffd.938528.