Research Article
BibTex RIS Cite

Baş Plaka Fantomunda Proton ve Helyum İyonlarının İkincil Nötron Üretimine Etkisi

Year 2021, Volume: 16 Issue: 2, 513 - 522, 25.11.2021
https://doi.org/10.29233/sdufeffd.996120

Abstract

Parçacık tedavisinde (PT) genellikle protonlar ve karbon iyonları kullanılır. Fakat protona göre bağıl biyolojik etkileri daha yüksek olan düşük Z’li iyonların (He, O, Ne gibi) kullanımı da araştırılmaktadır. PT’de dozun büyük kısmı, birincil parçacık tarafından tümör hacmine verilmesine rağmen, terapötik ışın ile hastanın dokuları arasındaki etkileşim tarafından üretilen ikincil parçacıkların katkısı nedeniyle ihmal edilemeyecek miktarda ek doz bırakılır. Özellikle nötronlar, tedavi edilen alandan çok uzağa enerji aktararak ikincil kanser riskini artırabilmektedir. Radyasyon tedavisinde yüklü parçacıkları kullanmak için insan dokusuyla birincil parçacık etkileşimleri sonucunda üretilen ikincil nötronları karakterize etmek çok önemlidir. Üretilen ikincil nötronlar detektör veya Monte Carlo (MC) benzetimi gibi yöntemlerle belirlenebilmektedir. Çalışmamızda 50-100 MeV/u enerjili proton ve He iyon ışınları tarafından baş plaka fantomunda üretilen toplam nötron sayıları, nötronlar ve tüm parçacıklar tarafından depolanan dozlar Particle and Heavy Ion Transport Code System (PHITS) MC kodu ile hesaplanmıştır. He iyon demeti tarafından üretilen ikincil nötron sayısı, proton demetlerine kıyasla 7-14 kat arttı. Protonlar tarafından üretilen ikincil nötron dozlarının He iyon demetlerindeki dozların %11.5 - %16.4’ü arasında olduğu hesaplandı.

Supporting Institution

Yok

Project Number

Yok

Thanks

Yok

References

  • [1] V. Giacometti, G. Battistoni, M. De Simoni, Y. Dong, M. Fischettic, E. Gioscio, et al., “Characterisation of the MONDO detector response to neutrons by means of a FLUKA Monte Carlo simulation,” Radiat. Meas., 119, 144–149, 2018.
  • [2] F. Tommasino, E. Scifoni, and M. Durante, “New ions for therapy,” Int. J. Part. Ther., 2 (3), 428–438, 2015.
  • [3] M. Lodge, M. Pijls-Johannesma, L. Stirk, A. J. Munro, D. De Ruysscher, and T. Jefferson, “A systematic literature review of the clinical and cost-effectiveness of hadron therapy in cancer,” Radiother. Oncol., 83 (2), 110–122, 2007.
  • [4] I. Mattei, F Bini, F Collamati, E De Lucia, P M Frallicciardi, E Iarocci, C Mancini-Terracciano, et al., “Secondary radiation measurements for particle therapy applications: Prompt photons produced by 4He, 12C and 16O ion beams in a PMMA target,” Phys. Med. Biol., 62 (4), 1438–1455, 2017
  • [5] D. A. S. C. Rtner et al., “Results of Carbon Ion Radiotherapy in 152 Patients,” Int. J. Radiation Oncology Biol. Phys., 58 (2), 631–640, 2004.
  • [6] J. R. Castro, D. E. Linstadt, J. P. Bahary, P. L. Petti, I. Daftari, J. M. Collier, et al., “Experience in charged particle irradiation of tumors of the skull base: 1977-1992,” Int. J. Radiat. Oncol. Biol. Phys., 29 (4), 647–655, 1994.
  • [7] D. Schulz-Ertner and H. Tsujii, “Particle radiation therapy using proton and heavier ion beams,” J. Clin. Oncol., 25 (8), 953–964, 2007.
  • [8] E. Gioscio, G. Battistoni, A. Bochetti, M. De Simoni, Y. Dong, M. Fischetti, et al., “Development of a novel neutron tracker for the characterisation of secondary neutrons emitted in Particle Therapy,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., 958 (162862), 1-4, 2020.
  • [9] G. Baiocco, S. Barbieri, G. Babini, J. Morini, D. Alloni, W. Friedland, et al., “The origin of neutron biological effectiveness as a function of energy,” Sci. Rep., 6 (34033), 1–14, 2016.
  • [10] T. Kajimoto, K. Tanaka, S. Endo, S. Kamada, H. Tanaka, M. Takada and T. Hamano, “Double differential cross sections of neutron production by 135 and 180 MeV protons on A-150 tissue-equivalent plastic,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 487, 38–44, 2021.
  • [11] K. Kurosu, I. J. Das, and V. P. Moskvin, “Optimization of GATE and PHITS Monte Carlo code parameters for spot scanning proton beam based on simulation with FLUKA general-purpose code,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 367, 14–25, 2016.
  • [12] C. M. Lund, G. Famulari, L. Montgomery, and J. Kildea, “A microdosimetric analysis of the interactions of mono-energetic neutrons with human tissue,” Phys. Medica, 73 (April), 29–42, 2020
  • [13] U. Titt, B. Bednarz, and H. Paganetti, “Comparison of MCNPX and Geant4 proton energy deposition predictions for clinical use,” Phys. Med. Biol., 57 (20), 6381–6393, 2012.
  • [14] D. J. Brenner, C. D. Elliston, E. J. Hall, and H. Paganetti, “Reduction of the secondary neutron dose in passively scattered proton radiotherapy, using an optimized pre-collimator/collimator,” Phys. Med. Biol., 54 (20), 6065–6078, 2009.
  • [15] R. A. Cecil, B. D. Anderson, A. R. Baldwin, and R. Madey, “Neutron angular and energy distributions from 710-MeV alphas stopping in water, carbon, steel, and lead, and 640-MeV alphas stopping in lead,” Phys. Rev. C, 21 (6), 2471–2484, 1980.
  • [16] L. Heilbronn, R. S. Cary, M. Cronqvist, F. Deák, K. Frankel, A. Galonsky, et al., “Neutron yields from 155 MeV/nucleon carbon and helium stopping in aluminum,” Nucl. Sci. Eng., 132 (1), 1–15, 1999.
  • [17] L. Heilbronn, C. J. Zeitlin, Y. Iwata, T. Murakami, H. Iwase, T. Nakamura, et al., “Secondary neutron-production cross sections from heavy-ion interactions between 230 and 600 MeV/nucleon,” Nucl. Sci. Eng., 157 (2), 142–158, 2007.
  • [18] T. Kurosawa et al., “Measurements of secondary neutrons produced from thick targets bombarded by high-energy helium and carbon ions,” Nucl. Sci. Eng., 132 (1), 30–57, 1999.
  • [19] T. Kurosawa, T. Nakamura, N. Nakao, T. Shibata, Y. Uwamino, and A. Fukumura, “Spectral measurements of neutrons, protons, deuterons and tritons produced by 100 MeV/nucleon He bombardment,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., 430 (2–3), 400–422, 1999.
  • [20] H. Sato, T. Kurosawa, H. Iwase, T. Nakamura, Y. Uwamino, and N. Nakao, “Measurements of double differential neutron production cross sections by 135 MeV/nucleon He, C, Ne and 95 MeV/nucleon Ar ions,” Phys. Rev. C - Nucl. Phys., 64 (034607), 1–12, 2001.
  • [21] P. Ortego, “Benchmarking of MCNPX with the experimental measurements of high-energy helium ions in HIMAC facility,” Radiat. Prot. Dosimetry, 116 (1–4), 43–49, 2005.
  • [22] K. W. Delinder, R. Khan, and J. L. Gräfe, “Neutron activation of gadolinium for ion therapy: a Monte Carlo study of charged particle beams,” Sci. Rep., 10 (1), 1–11, 2020.
  • [23] I. Gudowska and N. Sobolevsky, “Simulation of secondary particle production and absorbed dose to tissue in light ion beams,” Radiat. Prot. Dosimetry, 116 (1–4), 301–306, 2005.
  • [24] P. E. Tsai, L. H. Heilbronn, B. L. Lai, Y. Iwata, T. Murakami, and R. J. Sheu, “Thick target neutron yields from 100- and 230-MeV/nucleon helium ions bombarding water, PMMA, and iron,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 449, 62–70, 2019
  • [25] S. B. Jia, M. H. Hadizadeh, A. A. Mowlavi, and M. E. Loushab, “Evaluation of energy deposition and secondary particle production in proton therapy of brain using a slab head phantom,” Reports Pract. Oncol. Radiother., 19 (6), 376–384, 2014.
  • [26] R. Behrens and O. Hupe, “Influence of the phantom shape (slab, cylinder or alderson) on the performance ofan Hp(3) eye dosemeter,” Radiat. Prot. Dosimetry, 168 (4), 441–449, 2015
  • [27] D. R. White, R. V. Griffith and I. J. Wilson, “ICRU Report 46: Photon, electron, proton and neutron interaction data for body tissues.” Journal of the ICRU, 24 (1), 5-9, 1992
  • [28] H. M. Kooy et al., “A case study in proton pencil-beam scanning delivery,” Int. J. Radiat. Oncol. Biol. Phys., 76 (2), 624–630, 2010.
  • [29] K. Iida, A. Kohama, and K. Oyamatsu, “Formula for proton-nucleus reaction cross section at intermediate energies and its application,” J. Phys. Soc. Japan, 76 (4), 1–6, 2007.
  • [30] T. Sato et al., “Features of particle and heavy ion transport code system (PHITS) version 3.02,” J. Nucl. Sci. Technol., 55 (6), 684–690, 2018.
  • [31] A. Boudard, J. Cugnon, J. C. David, S. Leray, and D. Mancusi, “New potentialities of the Liège intranuclear cascade model for reactions induced by nucleons and light charged particles,” Phys. Rev. C - Nucl. Phys., 87 (1), 2013.
  • [32] Z. Morávek and L. Bogner, “Analysis of the physical interactions of therapeutic proton beams in water with the use of Geant4 Monte Carlo calculations,” Z. Med. Phys., 19 (3), 174–181, 2009ç
  • [33] U. Schneider, S. Agosteo, E. Pedroni, and J. Besserer, “Secondary neutron dose during proton therapy using spot scanning,” Int. J. Radiat. Oncol. Biol. Phys., 53 (1), 244–251, 2002ç
  • [34] A. J. Wroe, I. M. Cornelius, and A. B. Rosenfeld, “The role of nonelastic reactions in absorbed dose distributions from therapeutic proton beams in different medium,” Med. Phys., 32 (1), 37–41, 2005.
  • [35] M. A. Chaudhri, “Neutron production from patients during therapy with bremsstrahlung and hadrons: Are there potential risks with hadrons, especially with carbon ions?,” IFMBE Proc., Nuernberg, 2007, pp. 2207–2210.
  • [36] A. Dawidowska, M. P. Ferszt, and A. Konefał, “The determination of a dose deposited in reference medium due to (p,n) reaction occurring during proton therapy,” Reports Pract. Oncol. Radiother., 19, 3–8, 2014.
  • [37] J. Kempe, I. Gudowska, and A. Brahme, “Depth absorbed dose and LET distributions of therapeutic 1H, 4He, 7Li, and 12C beams,” Med. Phys., 34 (1), 183–192, 2007.
  • [38] S. Yonai and S. Matsumoto, “Monte Carlo study toward the development of a radiation field to simulate secondary neutrons produced in carbon-ion radiotherapy,” Radiat. Phys. Chem., 172, 1-9, 2020.

The Effect of Proton and Helium Ions on Secondary Neutron Production in the Slab Head Phantom

Year 2021, Volume: 16 Issue: 2, 513 - 522, 25.11.2021
https://doi.org/10.29233/sdufeffd.996120

Abstract

Particle therapy (PT) usually uses protons and carbon ions. In addition, the use of low-Z ions (such as He, O, Ne) with higher relative biological effects than protons is also being investigated. Although in PT the majority of the dose is delivered to the tumor volume by the primary particle, a negligible additional dose is left due to the contribution of secondary particles produced by the interaction between the therapeutic beam and the patient's tissues. In particular, neutrons can increase the risk of secondary cancer by transferring energy far away from the treated area. To use charged particles in radiation therapy, it is crucial to characterize secondary neutrons produced (SNP) as a result of primary particle interactions with human tissue. The SNP can be detected with the detector or by methods such as Monte Carlo (MC) simulation. In our study, the total number of neutrons produced in the slab head phantom by proton and He ion beams with an energy of 50-100 MeV/u, the doses stored by neutrons and all other particles were calculated with the Particle and Heavy Ion Transport Code System (PHITS) MC code. The number of SNP by He ion beam increased 7-14 times compared to proton beams. It was calculated that the doses of the SNP by protons were between 11.5% - 16.4% of those in the He ion beams.

Project Number

Yok

References

  • [1] V. Giacometti, G. Battistoni, M. De Simoni, Y. Dong, M. Fischettic, E. Gioscio, et al., “Characterisation of the MONDO detector response to neutrons by means of a FLUKA Monte Carlo simulation,” Radiat. Meas., 119, 144–149, 2018.
  • [2] F. Tommasino, E. Scifoni, and M. Durante, “New ions for therapy,” Int. J. Part. Ther., 2 (3), 428–438, 2015.
  • [3] M. Lodge, M. Pijls-Johannesma, L. Stirk, A. J. Munro, D. De Ruysscher, and T. Jefferson, “A systematic literature review of the clinical and cost-effectiveness of hadron therapy in cancer,” Radiother. Oncol., 83 (2), 110–122, 2007.
  • [4] I. Mattei, F Bini, F Collamati, E De Lucia, P M Frallicciardi, E Iarocci, C Mancini-Terracciano, et al., “Secondary radiation measurements for particle therapy applications: Prompt photons produced by 4He, 12C and 16O ion beams in a PMMA target,” Phys. Med. Biol., 62 (4), 1438–1455, 2017
  • [5] D. A. S. C. Rtner et al., “Results of Carbon Ion Radiotherapy in 152 Patients,” Int. J. Radiation Oncology Biol. Phys., 58 (2), 631–640, 2004.
  • [6] J. R. Castro, D. E. Linstadt, J. P. Bahary, P. L. Petti, I. Daftari, J. M. Collier, et al., “Experience in charged particle irradiation of tumors of the skull base: 1977-1992,” Int. J. Radiat. Oncol. Biol. Phys., 29 (4), 647–655, 1994.
  • [7] D. Schulz-Ertner and H. Tsujii, “Particle radiation therapy using proton and heavier ion beams,” J. Clin. Oncol., 25 (8), 953–964, 2007.
  • [8] E. Gioscio, G. Battistoni, A. Bochetti, M. De Simoni, Y. Dong, M. Fischetti, et al., “Development of a novel neutron tracker for the characterisation of secondary neutrons emitted in Particle Therapy,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., 958 (162862), 1-4, 2020.
  • [9] G. Baiocco, S. Barbieri, G. Babini, J. Morini, D. Alloni, W. Friedland, et al., “The origin of neutron biological effectiveness as a function of energy,” Sci. Rep., 6 (34033), 1–14, 2016.
  • [10] T. Kajimoto, K. Tanaka, S. Endo, S. Kamada, H. Tanaka, M. Takada and T. Hamano, “Double differential cross sections of neutron production by 135 and 180 MeV protons on A-150 tissue-equivalent plastic,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 487, 38–44, 2021.
  • [11] K. Kurosu, I. J. Das, and V. P. Moskvin, “Optimization of GATE and PHITS Monte Carlo code parameters for spot scanning proton beam based on simulation with FLUKA general-purpose code,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 367, 14–25, 2016.
  • [12] C. M. Lund, G. Famulari, L. Montgomery, and J. Kildea, “A microdosimetric analysis of the interactions of mono-energetic neutrons with human tissue,” Phys. Medica, 73 (April), 29–42, 2020
  • [13] U. Titt, B. Bednarz, and H. Paganetti, “Comparison of MCNPX and Geant4 proton energy deposition predictions for clinical use,” Phys. Med. Biol., 57 (20), 6381–6393, 2012.
  • [14] D. J. Brenner, C. D. Elliston, E. J. Hall, and H. Paganetti, “Reduction of the secondary neutron dose in passively scattered proton radiotherapy, using an optimized pre-collimator/collimator,” Phys. Med. Biol., 54 (20), 6065–6078, 2009.
  • [15] R. A. Cecil, B. D. Anderson, A. R. Baldwin, and R. Madey, “Neutron angular and energy distributions from 710-MeV alphas stopping in water, carbon, steel, and lead, and 640-MeV alphas stopping in lead,” Phys. Rev. C, 21 (6), 2471–2484, 1980.
  • [16] L. Heilbronn, R. S. Cary, M. Cronqvist, F. Deák, K. Frankel, A. Galonsky, et al., “Neutron yields from 155 MeV/nucleon carbon and helium stopping in aluminum,” Nucl. Sci. Eng., 132 (1), 1–15, 1999.
  • [17] L. Heilbronn, C. J. Zeitlin, Y. Iwata, T. Murakami, H. Iwase, T. Nakamura, et al., “Secondary neutron-production cross sections from heavy-ion interactions between 230 and 600 MeV/nucleon,” Nucl. Sci. Eng., 157 (2), 142–158, 2007.
  • [18] T. Kurosawa et al., “Measurements of secondary neutrons produced from thick targets bombarded by high-energy helium and carbon ions,” Nucl. Sci. Eng., 132 (1), 30–57, 1999.
  • [19] T. Kurosawa, T. Nakamura, N. Nakao, T. Shibata, Y. Uwamino, and A. Fukumura, “Spectral measurements of neutrons, protons, deuterons and tritons produced by 100 MeV/nucleon He bombardment,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., 430 (2–3), 400–422, 1999.
  • [20] H. Sato, T. Kurosawa, H. Iwase, T. Nakamura, Y. Uwamino, and N. Nakao, “Measurements of double differential neutron production cross sections by 135 MeV/nucleon He, C, Ne and 95 MeV/nucleon Ar ions,” Phys. Rev. C - Nucl. Phys., 64 (034607), 1–12, 2001.
  • [21] P. Ortego, “Benchmarking of MCNPX with the experimental measurements of high-energy helium ions in HIMAC facility,” Radiat. Prot. Dosimetry, 116 (1–4), 43–49, 2005.
  • [22] K. W. Delinder, R. Khan, and J. L. Gräfe, “Neutron activation of gadolinium for ion therapy: a Monte Carlo study of charged particle beams,” Sci. Rep., 10 (1), 1–11, 2020.
  • [23] I. Gudowska and N. Sobolevsky, “Simulation of secondary particle production and absorbed dose to tissue in light ion beams,” Radiat. Prot. Dosimetry, 116 (1–4), 301–306, 2005.
  • [24] P. E. Tsai, L. H. Heilbronn, B. L. Lai, Y. Iwata, T. Murakami, and R. J. Sheu, “Thick target neutron yields from 100- and 230-MeV/nucleon helium ions bombarding water, PMMA, and iron,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 449, 62–70, 2019
  • [25] S. B. Jia, M. H. Hadizadeh, A. A. Mowlavi, and M. E. Loushab, “Evaluation of energy deposition and secondary particle production in proton therapy of brain using a slab head phantom,” Reports Pract. Oncol. Radiother., 19 (6), 376–384, 2014.
  • [26] R. Behrens and O. Hupe, “Influence of the phantom shape (slab, cylinder or alderson) on the performance ofan Hp(3) eye dosemeter,” Radiat. Prot. Dosimetry, 168 (4), 441–449, 2015
  • [27] D. R. White, R. V. Griffith and I. J. Wilson, “ICRU Report 46: Photon, electron, proton and neutron interaction data for body tissues.” Journal of the ICRU, 24 (1), 5-9, 1992
  • [28] H. M. Kooy et al., “A case study in proton pencil-beam scanning delivery,” Int. J. Radiat. Oncol. Biol. Phys., 76 (2), 624–630, 2010.
  • [29] K. Iida, A. Kohama, and K. Oyamatsu, “Formula for proton-nucleus reaction cross section at intermediate energies and its application,” J. Phys. Soc. Japan, 76 (4), 1–6, 2007.
  • [30] T. Sato et al., “Features of particle and heavy ion transport code system (PHITS) version 3.02,” J. Nucl. Sci. Technol., 55 (6), 684–690, 2018.
  • [31] A. Boudard, J. Cugnon, J. C. David, S. Leray, and D. Mancusi, “New potentialities of the Liège intranuclear cascade model for reactions induced by nucleons and light charged particles,” Phys. Rev. C - Nucl. Phys., 87 (1), 2013.
  • [32] Z. Morávek and L. Bogner, “Analysis of the physical interactions of therapeutic proton beams in water with the use of Geant4 Monte Carlo calculations,” Z. Med. Phys., 19 (3), 174–181, 2009ç
  • [33] U. Schneider, S. Agosteo, E. Pedroni, and J. Besserer, “Secondary neutron dose during proton therapy using spot scanning,” Int. J. Radiat. Oncol. Biol. Phys., 53 (1), 244–251, 2002ç
  • [34] A. J. Wroe, I. M. Cornelius, and A. B. Rosenfeld, “The role of nonelastic reactions in absorbed dose distributions from therapeutic proton beams in different medium,” Med. Phys., 32 (1), 37–41, 2005.
  • [35] M. A. Chaudhri, “Neutron production from patients during therapy with bremsstrahlung and hadrons: Are there potential risks with hadrons, especially with carbon ions?,” IFMBE Proc., Nuernberg, 2007, pp. 2207–2210.
  • [36] A. Dawidowska, M. P. Ferszt, and A. Konefał, “The determination of a dose deposited in reference medium due to (p,n) reaction occurring during proton therapy,” Reports Pract. Oncol. Radiother., 19, 3–8, 2014.
  • [37] J. Kempe, I. Gudowska, and A. Brahme, “Depth absorbed dose and LET distributions of therapeutic 1H, 4He, 7Li, and 12C beams,” Med. Phys., 34 (1), 183–192, 2007.
  • [38] S. Yonai and S. Matsumoto, “Monte Carlo study toward the development of a radiation field to simulate secondary neutrons produced in carbon-ion radiotherapy,” Radiat. Phys. Chem., 172, 1-9, 2020.
There are 38 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Adem Pehlivanlı 0000-0003-4696-9311

Mustafa Hicabi Bölükdemir 0000-0002-7911-7863

Project Number Yok
Publication Date November 25, 2021
Published in Issue Year 2021 Volume: 16 Issue: 2

Cite

IEEE A. Pehlivanlı and M. H. Bölükdemir, “The Effect of Proton and Helium Ions on Secondary Neutron Production in the Slab Head Phantom”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 16, no. 2, pp. 513–522, 2021, doi: 10.29233/sdufeffd.996120.