Research Article
BibTex RIS Cite

Proteins Used in Electrospinning and Egg White Based Nanofiber Production

Year 2022, Volume: 17 Issue: 2, 496 - 521, 25.11.2022
https://doi.org/10.29233/sdufeffd.1173731

Abstract

In this study, protein-based nanofibers, their properties and application areas were investigated and nanofiber surface production was carried out with egg white protein. Proteins are divided into two main groups, vegetable and animal. These biological proteins have various uses in the food industry, cosmetics industry and especially in the medical field. In this research, protein-based polymers are subclassified according to their source. The general properties of these proteins and the usage areas of protein-based nanofibers are mentioned. In addition, nanofiber surfaces were obtained with electrospinning technology using egg white protein. The protein-based nanofibers are generally used in the field of biomedicine, drug delivery systems and tissue engineering in areas such as scaffolding, wound dressing, tissue generation. Apart from the medical field, it is also used as a packaging material in the food industry due to its biological structure. In addition, protein-based nanofibers have a wide range of uses such as filter material, biosensors, catalysts, skin prostheses, surgical threads, soft contact lenses and etc.

References

  • H. Gupta and A. Sharma, "Recent trends in protein and peptide drug delivery systems," Asian Journal of Pharmaceutics (AJP), vol. 3, no. 2, 2009.
  • A. Jain, A. Jain, A. Gulbake, S. Shilpi, P. Hurkat, and S. K. Jain, "Peptide and protein delivery using new drug delivery systems," Critical Reviews™ in Therapeutic Drug Carrier Systems, vol. 30, no. 4, 2013.
  • G. Rohman and J. Spadavecchia, "Biodegradable polymeric nanomaterials," Nanomaterials and Regenerative Medicine, pp. 49-92, 2016.
  • A. Yıldız, A. A. Kara, and F. Acartürk, "Peptide-protein based nanofibers in pharmaceutical and biomedical applications," International journal of biological macromolecules, vol. 148, pp. 1084-1097, 2020.
  • P. Jani, P. Manseta, and S. Patel, "Pharmaceutical approaches related to systemic delivery of protein and peptide drugs: an overview," Int. J. Pharm. Sci. Rev. Res, vol. 12, pp. 42-52, 2012.
  • F. Cengiz Çallıoğlu and H. Kesici Güler, "Fabrication of Polyvinylpyrrolidone Nanofibers with Green Solvents," Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, vol. 14, no. 2, pp. 352-366, 2019.
  • N. Angel, S. Li, F. Yan, and L. Kong, "Recent advances in electrospinning of nanofibers from bio-based carbohydrate polymers and their applications," Trends in Food Science & Technology, 2022.
  • G. Süpüren Mengüç, Z. Kanat, A. Çay, T. Kırcı, T. Gülümser, and I. Tarakçıoğlu, "Nano Lifler (Bölüm 2)," Tekstil ve Konfeksiyon, vol. 17, no. 2, pp. 83-89, 2007.
  • S. Babitha, L. Rachita, K. Karthikeyan, E. Shoba, I. Janani, B. Poornima, & K. P. Sai, "Electrospun protein nanofibers in healthcare: A review," International journal of pharmaceutics, vol. 523, no. 1, pp. 52-90, 2017.
  • A. İnce Yardımcı and Ö. Tarhan, "Electrospun Protein Nanofibers And Their Food Applications," Mugla Journal of Science and Technology, vol. 6, no. 2, pp. 52-62, 2020.
  • A. A. Almetwally, M. El-Sakhawy, M. Elshakankery, and M. Kasem, "Technology of nano-fibers: Production techniques and properties-Critical review," J. Text. Assoc, vol. 78, no. 1, pp. 5-14, 2017.
  • J. Doshi and D. H. Reneker, "Electrospinning process and applications of electrospun fibers," Journal of electrostatics, vol. 35, no. 2-3, pp. 151-160, 1995.
  • S. Agarwal, A. Greiner, and J. H. Wendorff, "Functional materials by electrospinning of polymers," Progress in Polymer Science, vol. 38, no. 6, pp. 963-991, 2013.
  • K. Liu, L. Deng, T. Zhang, K. Shen, and X. Wang, "Facile fabrication of environmentally friendly, waterproof, and breathable nanofibrous membranes with high UV-resistant performance by one-step electrospinning," Industrial & Engineering Chemistry Research, vol. 59, no. 10, pp. 4447-4458, 2020.
  • M. Yüccer, R. Temizkan, & C. Caner, " Fonksiyonel Gıda Olarak Yumurta: Bileşenleri ve Fonksiyonel Özellikleri," Akademik Gıda, vol. 10(4), pp. 70-76, 2012.
  • S. Jalili-Firoozinezhad, M. Filippi, F. Mohabatpour, D. Letourneur & A. Scherberich, "Chicken egg white: hatching of a new old biomaterial," Materials Today, 40, 193-214. 2020.
  • G. Bingöl, Proteinler. Ankara: Ankara Üniversitesi Yayınevi, 1972, pp. 1-15.
  • F. D. Özel Demiralp, N. İğci, S. Peker, and B. Ayhan, "Temel proteomik stratejiler," Ankara Üniversitesi Yayınları, 2014.
  • J. Bacardit, E. K. Burke, and N. Krasnogor, "Improving the scalability of rule-based evolutionary learning," Memetic computing, vol. 1, no. 1, pp. 55-67, 2009.
  • N. Reddy and Y. Yang, "Potential of plant proteins for medical applications," Trends in biotechnology, vol. 29, no. 10, pp. 490-498, 2011.
  • S. Jalili-Firoozinezhad, M. Filippi, F. Mohabatpour, D. Letourneur, and A. Scherberich, "Chicken egg white: Hatching of a new old biomaterial," Materials Today, vol. 40, pp. 193-214, 2020.
  • D. B. Khadka and D. T. Haynie, "Protein-and peptide-based electrospun nanofibers in medical biomaterials," Nanomedicine: Nanotechnology, Biology and Medicine, vol. 8, no. 8, pp. 1242-1262, 2012.
  • G. Gökşen, "Elektroeğirme yöntemiyle uçucu yağların nanolif ile enkapsülasyonu ve karakterizasyonu," Doktora, Fen Bilimleri Enstitüsü Gıda Mühendisliği Ana Bilim Dalı, Mersin Üniversitesi, Mersin, Türkiye, 2020.
  • J. A. Bhushani and C. Anandharamakrishnan, "Electrospinning and electrospraying techniques: Potential food based applications," Trends in Food Science & Technology, vol. 38, no. 1, pp. 21-33, 2014.
  • M. J. Fabra, M. A. Busolo, A. Lopez-Rubio, and J. M. Lagaron, "Nanostructured biolayers in food packaging," Trends in Food Science & Technology, vol. 31, no. 1, pp. 79-87, 2013.
  • B. Ghorani and N. Tucker, "Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology," Food Hydrocolloids, vol. 51, pp. 227-240, 2015.
  • A. C. Mendes, K. Stephansen, and I. S. Chronakis, "Electrospinning of food proteins and polysaccharides," Food Hydrocolloids, vol. 68, pp. 53-68, 2017.
  • V. A. Gaona-Sánchez, G. Calderón-Domínguez, E. Morales-Sánchez, J. J. Chanona-Pérez, G. Velázquez-de la Cruz, J. V. Méndez-Méndez, E. Terrés-Rojas, R. R. Farrera-Rebollo, "Preparation and characterisation of zein films obtained by electrospraying," Food Hydrocolloids, vol. 49, pp. 1-10, 2015.
  • S. Ali, Z. Khatri, K. W. Oh, I.-S. Kim, and S. H. Kim, "Zein/cellulose acetate hybrid nanofibers: Electrospinning and characterization," Macromolecular Research, vol. 22, no. 9, pp. 971-977, 2014.
  • S. Ullah, M. Hashmi, M. Q. Khan, D. Kharaghani, Y. Saito, T. Yamamoto, & I. S. Kim, "Silver sulfadiazine loaded zein nanofiber mats as a novel wound dressing," RSC advances, vol. 9, no. 1, pp. 268-277, 2019.
  • M. Karim, M. Fathi, and S. Soleimanian-Zad, "Nanoencapsulation of cinnamic aldehyde using zein nanofibers by novel needle-less electrospinning: Production, characterization and their application to reduce nitrite in sausages," Journal of Food Engineering, vol. 288, p. 110140, 2021.
  • A. Yemenicioğlu, "Zein and its composites and blends with natural active compounds: Development of antimicrobial films for food packaging," in Antimicrobial food packaging: Elsevier, 2016, pp. 503-513.
  • S. S. Silva, B. J. Goodfellow, J. Benesch, J. Rocha, J. Mano, and R. Reis, "Morphology and miscibility of chitosan/soy protein blended membranes," Carbohydrate Polymers, vol. 70, no. 1, pp. 25-31, 2007.
  • K. Ramji and R. N. Shah, "Electrospun soy protein nanofiber scaffolds for tissue regeneration," Journal of biomaterials applications, vol. 29, no. 3, pp. 411-422, 2014.
  • N. Sampath Kumar, C. Santhosh, S. Vathaluru Sudakaran, A. Deb, V. Raghavan, V. Venugopal, A. Bhatnagar, S. Bhat, and N. G. Andrews, "Electrospun polyurethane and soy protein nanofibres for wound dressing applications," Iet Nanobiotechnology, vol. 12, no. 2, pp. 94-98, 2018.
  • R. Wongkanya, P. Chuysinuan, C. Pengsuk, S. Techasakul, K. Lirdprapamongkol, J. Svasti, & P. Nooeaid, "Electrospinning of alginate/soy protein isolated nanofibers and their release characteristics for biomedical applications," Journal of Science: Advanced Materials and Devices, vol. 2, no. 3, pp. 309-316, 2017.
  • C. Vaz, L. de Graaf, R. Reis, and A. Cunha, "Soy protein-based systems for different tissue regeneration applications," in Polymer based systems on tissue engineering, replacement and regeneration: Springer, 2002, pp. 93-110.
  • S. Swain, K. Rao, and P. Nayak, "Biodegradable polymers. III. Spectral, thermal, mechanical, and morphological properties of cross‐linked furfural–soy protein concentrate," Journal of applied polymer science, vol. 93, no. 6, pp. 2590-2596, 2004.
  • C. M. Vaz, M. Fossen, R. F. Van Tuil, L. A. De Graaf, R. L. Reis, and A. M. Cunha, "Casein and soybean protein‐based thermoplastics and composites as alternative biodegradable polymers for biomedical applications," Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, vol. 65, no. 1, pp. 60-70, 2003.
  • ChemSrc. (2022, Eylül 10) [Online]. Erişim: https://www.chemsrc.com/en/cas/9010-10-0_1198690.html.
  • Q. Fang, M. Zhu, S. Yu, Sui, G., and X. Yang, "Studies on soy protein isolate/polyvinyl alcohol hybrid nanofiber membranes as multi-functional eco-friendly filtration materials," Materials Science and Engineering: B, vol. 214, pp. 1-10, 2016.
  • D. Cho, O. Nnadi, A. Netravali, and Y. L. Joo, "Electrospun hybrid soy protein/PVA fibers," Macromolecular Materials and Engineering, vol. 295, no. 8, pp. 763-773, 2010.
  • N. Varshney, A. K. Sahi, S. Poddar, and S. K. Mahto, "Soy protein isolate supplemented silk fibroin nanofibers for skin tissue regeneration: Fabrication and characterization," International Journal of Biological Macromolecules, vol. 160, pp. 112-127, 2020.
  • J. A. Gerstenhaber, R. Brodsky, R. B. Huneke, and P. I. Lelkes, "Electrospun soy protein scaffolds as wound dressings: Enhanced reepithelialization in a porcine model of wound healing," Wound Medicine, vol. 5, pp. 9-15, 2014.
  • S. Tansaz, L. Liverani, L. Vester, and A. R. Boccaccini, "Soy protein meets bioactive glass: Electrospun composite fibers for tissue engineering applications," Materials Letters, vol. 199, pp. 143-146, 2017.
  • Z. Mohebian, L. Y. Maroufi, and M. Ghorbani, "Development of a novel reinforced film based on gellan gum/cellulose nanofiber/soy protein for skin tissue engineering application," New Journal of Chemistry, vol. 45, no. 31, pp. 13814-13821, 2021.
  • S. Selvaraj, R. Thangam, and N. N. Fathima, "Electrospinning of casein nanofibers with silver nanoparticles for potential biomedical applications," International journal of biological macromolecules, vol. 120, pp. 1674-1681, 2018.
  • S. Dhasmana, S. Das, and S. Shrivastava, "Potential nutraceuticals from the casein fraction of goat’s milk," Journal of Food Biochemistry, vol. 46, no. 6, p. e13982, 2022.
  • A. B. Öztürk and Z. P. Akgüner, "İpek Fibroin/Polivinil Alkol Esaslı İlaç Taşıyıcı Yara Örtüleri," Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 24, no. 1, pp. 25-34, 2020.
  • F. Ak, "İpek fibroin kriyojellerinin sentezi ve mekanik özelliklerinin incelenmesi," Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Kimya Ana Bilim Dalı, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2013.
  • S. Çalamak, C. Erdoğdu, M. Özalp, and K. Ulubayram, "Silk fibroin based antibacterial bionanotextiles as wound dressing materials," Materials Science and Engineering: C, vol. 43, pp. 11-20, 2014.
  • N. Guziewicz, A. Best, B. Perez-Ramirez, and D. L. Kaplan, "Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies," Biomaterials, vol. 32, no. 10, pp. 2642-2650, 2011.
  • B. Çağlayan, "Elektro lif çekim yöntemi ile üretilen nanoliflerin yara örtülerinde ilaç salım sistemi olarak kullanımı," Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Tekstil Mühendisliği Ana Bilim Dalı, Ege Üniversitesi, İzmir, Türkiye, 2019.
  • Molecular Depot. (2022, Eylül 10) [Online]. Erişim: https://moleculardepot.com/product/silk-fibroin-from-bombyx-mori-silkworm-50-mg/
  • M. Farokhi, F. Mottaghitalab, Y. Fatahi, A. Khademhosseini, and D. L. Kaplan, "Overview of silk fibroin use in wound dressings," Trends in biotechnology, vol. 36, no. 9, pp. 907-922, 2018.
  • T. P. Nguyen, Q. V. Nguyen, V. -H. Nguyen, T. -H. Le, V. Q. N. Huynh, D. -V. N. Vo, Q. T. Trinh, S. Y. Kim, Q. V. Le, "Silk fibroin-based biomaterials for biomedical applications: a review," Polymers, vol. 11, no. 12, p. 1933, 2019.
  • O. Bayraktar, Ö. Malay, Y. Özgarip, and A. Batıgün, "Silk fibroin as a novel coating material for controlled release of theophylline," European Journal of Pharmaceutics and Biopharmaceutics, vol. 60, no. 3, pp. 373-381, 2005.
  • Z. X. Cai, X. M. Mo, K. H. Zhang, L. P. Fan, A. L. Yin, C. L. He, & H. S. Wang, "Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications," International journal of molecular sciences, vol. 11, no. 9, pp. 3529-3539, 2010.
  • R. Zhang, Q. Han, Y. Li, Y. Cai, X. Zhu, T. Zhang, & Y. Liu, "High antibacterial performance of electrospinning silk fibroin/gelatin film modified with graphene oxide‐sliver nanoparticles," Journal of Applied Polymer Science, vol. 136, no. 35, p. 47904, 2019.
  • C. M. Srivastava, R. Purwar, and A. P. Gupta, "Enhanced potential of biomimetic, silver nanoparticles functionalized Antheraea mylitta (tasar) silk fibroin nanofibrous mats for skin tissue engineering," International journal of biological macromolecules, vol. 130, pp. 437-453, 2019.
  • F. Cengiz Çallıoğlu and H. Kesici Güler, "Production of essential oil-based composite nanofibers by emulsion electrospinning," Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 26, no. 7, pp. 1178-1185, 2020.
  • A. A. Aldana and G. A. Abraham, "Current advances in electrospun gelatin-based scaffolds for tissue engineering applications," International journal of pharmaceutics, vol. 523, no. 2, pp. 441-453, 2017.
  • T. Li, M. Sun, and S. Wu, "State-of-the-art review of electrospun gelatin-based nanofiber dressings for wound healing applications," Nanomaterials, vol. 12, no. 5, p. 784, 2022.
  • M. Inal and G. Mülazımoğlu, "Production and characterization of bactericidal wound dressing material based on gelatin nanofiber," International journal of biological macromolecules, vol. 137, pp. 392-404, 2019.
  • N. Devi, M. Sarmah, B. Khatun, and T. K. Maji, "Encapsulation of active ingredients in polysaccharide–protein complex coacervates," Advances in colloid and interface science, vol. 239, pp. 136-145, 2017.
  • X. Xu and M. Zhou, "Antimicrobial gelatin nanofibers containing silver nanoparticles," Fibers and polymers, vol. 9, no. 6, pp. 685-690, 2008.
  • N. T. B. Linh and B.-T. Lee, "Electrospinning of polyvinyl alcohol/gelatin nanofiber composites and cross-linking for bone tissue engineering application," Journal of biomaterials applications, vol. 27, no. 3, pp. 255-266, 2012.
  • F. C. Çallıoğlu, H. K. Güler, and E. S. Çetin, "Emulsion electrospinning of bicomponent poly (vinyl pyrrolidone)/gelatin nanofibers with thyme essential oil," Materials Research Express, vol. 6, no. 12, p. 125013, 2019.
  • Y. Zhou, X. Miao, X. Lan, J. Luo, T. Luo, Z. Zhong, X. Gao, Z. Mafang, J. Ji, H. Wang, Y. Tang, "Angelica essential oil loaded electrospun gelatin nanofibers for active food packaging application," Polymers, vol. 12, no. 2, p. 299, 2020.
  • M. Li, Y. Guo, Y. Wei, A. G. MacDiarmid, and P. I. Lelkes, "Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications," Biomaterials, vol. 27, no. 13, pp. 2705-2715, 2006.
  • H. Zhang and J. Liu, "Electrospun poly (lactic-co-glycolic acid)/wool keratin fibrous composite scaffolds potential for bone tissue engineering applications," Journal of Bioactive and Compatible Polymers, vol. 28, no. 2, pp. 141-153, 2013.
  • A. Aluigi, A. Corbellini, F. Rombaldoni, and G. Mazzuchetti, "Wool-derived keratin nanofiber membranes for dynamic adsorption of heavy-metal ions from aqueous solutions," Textile Research Journal, vol. 83, no. 15, pp. 1574-1586, 2013.
  • R. D. Gazioğlu, "Keratin esaslı yüzeylerin elektroçekim yöntemiyle elde edilmesi, karakterizasyonu ve gaz sorpsiyon özelliklerinin incelenmesi," Doktora Tezi, Fen Bilimleri Enstitüsü, Lif ve Polimer Mühendisliği Ana Bilim Dalı, Bursa Teknik Üniversitesi, Bursa, Türkiye, 2018.
  • A. Aluigi, A. Varesano, A. Montarsolo, C. Vineis, F. Ferrero, G. Mazzuchetti, C. Tonin, "Electrospinning of keratin/poly (ethylene oxide) blend nanofibers," Journal of Applied Polymer Science, vol. 104, no. 2, pp. 863-870, 2007.
  • M. Zoccola, A. Aluigi, A. Patrucco, C. Vineis, F. Forlini, P. Locatelli, C. S. Maria & C. Tonin, "Microwave-assisted chemical-free hydrolysis of wool keratin," Textile Research Journal, vol. 82, no. 19, pp. 2006-2018, 2012.
  • F. Gao, W. Li, J. Deng, J. Kan, T. Guo, B. Wang, & S. Hao, "Recombinant human hair keratin nanoparticles accelerate dermal wound healing," ACS applied materials & interfaces, vol. 11, no. 20, pp. 18681-18690, 2019.
  • W. Li, F. Gao, J. Kan, J. Deng, B. Wang, and S. Hao, "Synthesis and fabrication of a keratin-conjugated insulin hydrogel for the enhancement of wound healing," Colloids and Surfaces B: Biointerfaces, vol. 175, pp. 436-444, 2019.
  • S. Xu, L. Sang, Y. Zhang, X. Wang, and X. Li, "Biological evaluation of human hair keratin scaffolds for skin wound repair and regeneration," Materials Science and Engineering: C, vol. 33, no. 2, pp. 648-655, 2013.
  • S. Ranganathan, K. Balagangadharan, and N. Selvamurugan, "Chitosan and gelatin-based electrospun fibers for bone tissue engineering," International journal of biological macromolecules, vol. 133, pp. 354-364, 2019.
  • Z. -C. Xing, J. Yuan, W.-P. Chae, I.-K. Kang, and S. -Y. Kim, "Keratin nanofibers as a biomaterial," in Int Conf Nanotechnology and Biosensors, Singapore, 2011, vol. 2, pp. 120-124.
  • A. Figoli, C. Ursino, D. O. Sanchez Ramirez, R. A. Carletto, C. Tonetti, A. Varesano, M. P. De Santo, A. Cassano, and C. Vineis, "Fabrication of electrospun keratin nanofiber membranes for air and water treatment," Polymer Engineering & Science, vol. 59, no. 7, pp. 1472-1478, 2019.
  • J. -P. Ye, J. S. Gong, C. Su, Y. G. Liu, M. Jiang, H. Pan, R. -Y. Li, Y. Geng, Z. -H. Xu, & J. S. Shi, "Fabrication and characterization of high molecular keratin based nanofibrous membranes for wound healing," Colloids and Surfaces B: Biointerfaces, vol. 194, p. 111158, 2020.
  • R. Erdem and E. Sancak, "Elektroçekim yöntemiyle elde edilen poliamid 6/kitosan bazlı nanoliflerin morfolojik özelliklerinin incelenmesi," İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, vol. 12, no. 24, pp. 53-65, 2013.
  • G. Ö. Kayan and A. Kayan, "Composite of natural polymers and their adsorbent properties on the dyes and heavy metal ions," Journal of Polymers and the Environment, vol. 29, no. 11, pp. 3477-3496, 2021.
  • E. Bolaina-Lorenzo, C. Martínez-Ramos, M. Monleón-Pradas, W. Herrera-Kao, J. V. Cauich-Rodríguez, and J. M. Cervantes-Uc, "Electrospun polycaprolactone/chitosan scaffolds for nerve tissue engineering: physicochemical characterization and Schwann cell biocompatibility," Biomedical Materials, vol. 12, no. 1, p. 015008, 2016.
  • N. Bhattarai, D. Edmondson, O. Veiseh, F. A. Matsen, and M. Zhang, "Electrospun chitosan-based nanofibers and their cellular compatibility," Biomaterials, vol. 26, no. 31, pp. 6176-6184, 2005.
  • X. Wang, L. Wang, Q. Wu, F. Bao, H. Yang, X. Qiu, & J. Chang, "Chitosan/calcium silicate cardiac patch stimulates cardiomyocyte activity and myocardial performance after infarction by synergistic effect of bioactive ions and aligned nanostructure," ACS applied materials & interfaces, vol. 11, no. 1, pp. 1449-1468, 2018.
  • I. K. Shim, W. H. Suh, S. Y. Lee, S. H. Lee, S. J. Heo, M. C. Lee, & S. J. Lee, "Chitosan nano‐/microfibrous double‐layered membrane with rolled‐up three‐dimensional structures for chondrocyte cultivation," Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, vol. 90, no. 2, pp. 595-602, 2009.
  • H.-S. Jung, M. H. Kim, J. Y. Shin, S. R. Park, J.-Y. Jung, and W. H. Park, "Electrospinning and wound healing activity of β-chitin extracted from cuttlefish bone," Carbohydrate polymers, vol. 193, pp. 205-211, 2018.
  • G. Sandri, D. Miele, A. Faccendini, M. C. Bonferoni, S. Rossi, P. Grisoli, A. Taglietti, M. Ruggeri, G. Bruni, B. Vigani, F. Ferrari, "Chitosan/glycosaminoglycan scaffolds: the role of silver nanoparticles to control microbial infections in wound healing," Polymers, vol. 11, no. 7, p. 1207, 2019.
  • F. Tao, Y. Cheng, X. Shi, H. Zheng, Y. Du, W. Xiang, & H. Deng, "Applications of chitin and chitosan nanofibers in bone regenerative engineering," Carbohydrate polymers, vol. 230, p. 115658, 2020.
  • R. Jayakumar, M. Prabaharan, S. Nair, and H. Tamura, "Novel chitin and chitosan nanofibers in biomedical applications," Biotechnology advances, vol. 28, no. 1, pp. 142-150, 2010.
  • S. Bayat, N. Amiri, E. Pishavar, F. Kalalinia, J. Movaffagh, and M. Hashemi, "Bromelain-loaded chitosan nanofibers prepared by electrospinning method for burn wound healing in animal models," Life sciences, vol. 229, pp. 57-66, 2019.
  • F. Liu, Y. Liu, Z. Sun, D. Wang, H. Wu, L. Du, & D. Wang, "Preparation and antibacterial properties of ε-polylysine-containing gelatin/chitosan nanofiber films," International journal of biological macromolecules, vol. 164, pp. 3376-3387, 2020.
  • E. Uğurlu, Ö. Duysak, E. İ. Saygılı, U. Sinem, and S. Sayın, "Denizel Omurgasız Canlılardan Elde Edilen Kolajenler ve Kullanım Alanları," Ecological Life Sciences, vol. 15, no. 1, pp. 24-35, 2020.
  • H. Bahria, "Electrospinning of collagen: Formation of biomedical scaffold," Adv. Res. Text. Eng, vol. 2, p. 1017, 2017.
  • D. Zhang, X. Wu, J. Chen, and K. Lin, "The development of collagen based composite scaffolds for bone regeneration," Bioactive materials, vol. 3, no. 1, pp. 129-138, 2018.
  • Z. Mbese, S. Alven, and B. A. Aderibigbe, "Collagen-based nanofibers for skin regeneration and wound dressing applications," Polymers, vol. 13, no. 24, p. 4368, 2021.
  • W. He, T. Yong, W. E. Teo, Z. Ma, and S. Ramakrishna, "Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering," Tissue engineering, vol. 11, no. 9-10, pp. 1574-1588, 2005.
  • V. Irawan, T.-C. Sung, A. Higuchi, and T. Ikoma, "Collagen scaffolds in cartilage tissue engineering and relevant approaches for future development," Tissue engineering and regenerative medicine, vol. 15, no. 6, pp. 673-697, 2018.
  • M. Hromadka, J. B. Collins, C. Reed, L. Han, K. K. Kolappa, B. A. Cairns, T. Andrady, J. A. van Aalst, "Nanofiber applications for burn care," Journal of burn care & research, vol. 29, no. 5, pp. 695-703, 2008.
  • S. Liao, B. Li, Z. Ma, H. Wei, C. Chan, and S. Ramakrishna, "Biomimetic electrospun nanofibers for tissue regeneration," Biomedical materials, vol. 1, no. 3, p. R45, 2006.
  • J. Lin, C. Li, Y. Zhao, J. Hu, and L.-M. Zhang, "Co-electrospun nanofibrous membranes of collagen and zein for wound healing," ACS applied materials & interfaces, vol. 4, no. 2, pp. 1050-1057, 2012.
  • M. P. Prabhakaran, E. Vatankhah, and S. Ramakrishna, "Electrospun aligned PHBV/collagen nanofibers as substrates for nerve tissue engineering," Biotechnology and bioengineering, vol. 110, no. 10, pp. 2775-2784, 2013.
  • M. Yüccer, R. Temizkan, and C. Caner, "Fonksiyonel gıda olarak yumurta: bileşenleri ve fonksiyonel özellikleri," Akademik Gıda, vol. 10, no. 4, pp. 70-76, 2012.
  • E. C. Li-Chan, W. D. Powrie, and S. Nakai, "The chemistry of eggs and egg products," in Egg science and technology, W. J. Stadelman and O. J. Cotterill Eds., 4th ed. New York: 711 Third Avenue, 2013, pp. 105-175.
  • S. Tanabe, S. Tesaki, and M. Watanabe, "Producing a low ovomucoid egg white preparation by precipitation with aqueous ethanol," Bioscience, biotechnology, and biochemistry, vol. 64, no. 9, pp. 2005-2007, 2000.
  • Y. Shaabani, M. Sirousazar, and F. Kheiri, "Crosslinked swellable clay/egg white bionanocomposites," Applied Clay Science, vol. 126, pp. 287-296, 2016.
  • M. P. Mani and S. K. Jaganathan, "Blood compatibility assessments of novel electrospun PVA/egg white nanocomposite membrane," Bioinspired, Biomimetic and Nanobiomaterials, vol. 7, no. 4, pp. 213-218, 2018.
  • X. Dong and Y. Q. Zhang, "An insight on egg white: From most common functional food to biomaterial application," Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 109, no. 7, pp. 1045-1058, 2021.
  • P. Zahedi and M. Fallah-Darrehchi, "Electrospun egg albumin-PVA nanofibers containing tetracycline hydrochloride: Morphological, drug release, antibacterial, thermal and mechanical properties," Fibers and Polymers, vol. 16, no. 10, pp. 2184-2192, 2015.
  • Y. Li, H. Jiang, and K. Zhu, "Encapsulation and controlled release of lysozyme from electrospun poly (ε-caprolactone)/poly (ethylene glycol) non-woven membranes by formation of lysozyme–oleate complexes," Journal of Materials Science: Materials in Medicine, vol. 19, no. 2, pp. 827-832, 2008.
  • H. Jiang, Y. Hu, Y. Li, P. Zhao, K. Zhu, and W. Chen, "A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents," Journal of controlled release, vol. 108, no. 2-3, pp. 237-243, 2005.
  • T. G. Kim, D. S. Lee, and T. G. Park, "Controlled protein release from electrospun biodegradable fiber mesh composed of poly (ɛ-caprolactone) and poly (ethylene oxide)," International journal of pharmaceutics, vol. 338, no. 1-2, pp. 276-283, 2007.
  • N. Charernsriwilaiwat, P. Opanasopit, T. Rojanarata, and T. Ngawhirunpat, "Lysozyme-loaded, electrospun chitosan-based nanofiber mats for wound healing," International Journal of Pharmaceutics, vol. 427, no. 2, pp. 379-384, 2012.
  • P. Tonglairoum, T. Ngawhirunpat, T. Rojanarata, and P. Opanasopit, "Lysozyme-immobilized electrospun PAMA/PVA and PSSA-MA/PVA ion-exchange nanofiber for wound healing," Pharmaceutical development and technology, vol. 20, no. 8, pp. 976-983, 2015.
  • H. R. Ibrahim, A. Kato, and K. Kobayashi, "Antimicrobial effects of lysozyme against gram-negative bacteria due to covalent binding of palmitic acid," Journal of Agricultural and Food Chemistry, vol. 39, no. 11, pp. 2077-2082, 1991.
  • N. H. Silva, P. Garrido-Pascual, C. Moreirinha, A. Almeida, T. Palomares, A. Alonso-Varona, C. Vilela, & C. S. Freire, "Multifunctional nanofibrous patches composed of nanocellulose and lysozyme nanofibers for cutaneous wound healing," International Journal of Biological Macromolecules, vol. 165, pp. 1198-1210, 2020.
  • K. Feng, P. Wen, H. Yang, N. Li, W. Y. Lou, M. H. Zong, & H. Wu, "Enhancement of the antimicrobial activity of cinnamon essential oil-loaded electrospun nanofilm by the incorporation of lysozyme," RSC advances, vol. 7, no. 3, pp. 1572-1580, 2017.

Elektro Lif Çekiminde Kullanılan Proteinler ve Yumurta Akı Esaslı Nanolif Üretimi

Year 2022, Volume: 17 Issue: 2, 496 - 521, 25.11.2022
https://doi.org/10.29233/sdufeffd.1173731

Abstract

Bu çalışmada protein esaslı nanolifler, özellikleri ve uygulama alanları araştırılmış ve yumurta akı proteininden nanolifli yüzey üretimi gerçekleştirilmiştir. Proteinler, bitkisel ve hayvansal olmak üzere iki ana gruba ayrılırlar. Biyolojik yapıdaki bu proteinler, medikal alan başta olmak üzere gıda endüstrisinde ve kozmetik sanayiinde çeşitli kullanım alanlarına sahiptir. Bu araştırmada, protein esaslı polimerler alt sınıflara ayrılmış, her birinin özellikleri verilmiş, nanolif üretimlerinden bahsedilmiş ve protein esaslı nanoliflerin kullanım alanlarına değinilmiştir. Ayrıca yumurta akı proteini kullanılarak elektro lif çekim teknolojisi ile nanolifli yüzeyler elde edilmiştir. Protein esaslı nanoliflerin biyomedikal alanda genel olarak, ilaç salım sistemleri ve doku mühendisliğinde yapı iskelesi, yara örtüsü, doku jenerasyonu gibi alanlarda kullanımı söz konusudur. Medikal alan dışında ise biyolojik yapısından kaynaklı gıda endüstrisinde de paketleme malzemesi olarak kullanımı söz konusudur. Ayrıca, protein esaslı nanoliflerin filtre malzemesi, biyosensör, katalizör, deri protezleri, ameliyat iplikleri, yumuşak kontakt lensler gibi çok çeşitli kullanım alanları da mevcuttur.

References

  • H. Gupta and A. Sharma, "Recent trends in protein and peptide drug delivery systems," Asian Journal of Pharmaceutics (AJP), vol. 3, no. 2, 2009.
  • A. Jain, A. Jain, A. Gulbake, S. Shilpi, P. Hurkat, and S. K. Jain, "Peptide and protein delivery using new drug delivery systems," Critical Reviews™ in Therapeutic Drug Carrier Systems, vol. 30, no. 4, 2013.
  • G. Rohman and J. Spadavecchia, "Biodegradable polymeric nanomaterials," Nanomaterials and Regenerative Medicine, pp. 49-92, 2016.
  • A. Yıldız, A. A. Kara, and F. Acartürk, "Peptide-protein based nanofibers in pharmaceutical and biomedical applications," International journal of biological macromolecules, vol. 148, pp. 1084-1097, 2020.
  • P. Jani, P. Manseta, and S. Patel, "Pharmaceutical approaches related to systemic delivery of protein and peptide drugs: an overview," Int. J. Pharm. Sci. Rev. Res, vol. 12, pp. 42-52, 2012.
  • F. Cengiz Çallıoğlu and H. Kesici Güler, "Fabrication of Polyvinylpyrrolidone Nanofibers with Green Solvents," Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, vol. 14, no. 2, pp. 352-366, 2019.
  • N. Angel, S. Li, F. Yan, and L. Kong, "Recent advances in electrospinning of nanofibers from bio-based carbohydrate polymers and their applications," Trends in Food Science & Technology, 2022.
  • G. Süpüren Mengüç, Z. Kanat, A. Çay, T. Kırcı, T. Gülümser, and I. Tarakçıoğlu, "Nano Lifler (Bölüm 2)," Tekstil ve Konfeksiyon, vol. 17, no. 2, pp. 83-89, 2007.
  • S. Babitha, L. Rachita, K. Karthikeyan, E. Shoba, I. Janani, B. Poornima, & K. P. Sai, "Electrospun protein nanofibers in healthcare: A review," International journal of pharmaceutics, vol. 523, no. 1, pp. 52-90, 2017.
  • A. İnce Yardımcı and Ö. Tarhan, "Electrospun Protein Nanofibers And Their Food Applications," Mugla Journal of Science and Technology, vol. 6, no. 2, pp. 52-62, 2020.
  • A. A. Almetwally, M. El-Sakhawy, M. Elshakankery, and M. Kasem, "Technology of nano-fibers: Production techniques and properties-Critical review," J. Text. Assoc, vol. 78, no. 1, pp. 5-14, 2017.
  • J. Doshi and D. H. Reneker, "Electrospinning process and applications of electrospun fibers," Journal of electrostatics, vol. 35, no. 2-3, pp. 151-160, 1995.
  • S. Agarwal, A. Greiner, and J. H. Wendorff, "Functional materials by electrospinning of polymers," Progress in Polymer Science, vol. 38, no. 6, pp. 963-991, 2013.
  • K. Liu, L. Deng, T. Zhang, K. Shen, and X. Wang, "Facile fabrication of environmentally friendly, waterproof, and breathable nanofibrous membranes with high UV-resistant performance by one-step electrospinning," Industrial & Engineering Chemistry Research, vol. 59, no. 10, pp. 4447-4458, 2020.
  • M. Yüccer, R. Temizkan, & C. Caner, " Fonksiyonel Gıda Olarak Yumurta: Bileşenleri ve Fonksiyonel Özellikleri," Akademik Gıda, vol. 10(4), pp. 70-76, 2012.
  • S. Jalili-Firoozinezhad, M. Filippi, F. Mohabatpour, D. Letourneur & A. Scherberich, "Chicken egg white: hatching of a new old biomaterial," Materials Today, 40, 193-214. 2020.
  • G. Bingöl, Proteinler. Ankara: Ankara Üniversitesi Yayınevi, 1972, pp. 1-15.
  • F. D. Özel Demiralp, N. İğci, S. Peker, and B. Ayhan, "Temel proteomik stratejiler," Ankara Üniversitesi Yayınları, 2014.
  • J. Bacardit, E. K. Burke, and N. Krasnogor, "Improving the scalability of rule-based evolutionary learning," Memetic computing, vol. 1, no. 1, pp. 55-67, 2009.
  • N. Reddy and Y. Yang, "Potential of plant proteins for medical applications," Trends in biotechnology, vol. 29, no. 10, pp. 490-498, 2011.
  • S. Jalili-Firoozinezhad, M. Filippi, F. Mohabatpour, D. Letourneur, and A. Scherberich, "Chicken egg white: Hatching of a new old biomaterial," Materials Today, vol. 40, pp. 193-214, 2020.
  • D. B. Khadka and D. T. Haynie, "Protein-and peptide-based electrospun nanofibers in medical biomaterials," Nanomedicine: Nanotechnology, Biology and Medicine, vol. 8, no. 8, pp. 1242-1262, 2012.
  • G. Gökşen, "Elektroeğirme yöntemiyle uçucu yağların nanolif ile enkapsülasyonu ve karakterizasyonu," Doktora, Fen Bilimleri Enstitüsü Gıda Mühendisliği Ana Bilim Dalı, Mersin Üniversitesi, Mersin, Türkiye, 2020.
  • J. A. Bhushani and C. Anandharamakrishnan, "Electrospinning and electrospraying techniques: Potential food based applications," Trends in Food Science & Technology, vol. 38, no. 1, pp. 21-33, 2014.
  • M. J. Fabra, M. A. Busolo, A. Lopez-Rubio, and J. M. Lagaron, "Nanostructured biolayers in food packaging," Trends in Food Science & Technology, vol. 31, no. 1, pp. 79-87, 2013.
  • B. Ghorani and N. Tucker, "Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology," Food Hydrocolloids, vol. 51, pp. 227-240, 2015.
  • A. C. Mendes, K. Stephansen, and I. S. Chronakis, "Electrospinning of food proteins and polysaccharides," Food Hydrocolloids, vol. 68, pp. 53-68, 2017.
  • V. A. Gaona-Sánchez, G. Calderón-Domínguez, E. Morales-Sánchez, J. J. Chanona-Pérez, G. Velázquez-de la Cruz, J. V. Méndez-Méndez, E. Terrés-Rojas, R. R. Farrera-Rebollo, "Preparation and characterisation of zein films obtained by electrospraying," Food Hydrocolloids, vol. 49, pp. 1-10, 2015.
  • S. Ali, Z. Khatri, K. W. Oh, I.-S. Kim, and S. H. Kim, "Zein/cellulose acetate hybrid nanofibers: Electrospinning and characterization," Macromolecular Research, vol. 22, no. 9, pp. 971-977, 2014.
  • S. Ullah, M. Hashmi, M. Q. Khan, D. Kharaghani, Y. Saito, T. Yamamoto, & I. S. Kim, "Silver sulfadiazine loaded zein nanofiber mats as a novel wound dressing," RSC advances, vol. 9, no. 1, pp. 268-277, 2019.
  • M. Karim, M. Fathi, and S. Soleimanian-Zad, "Nanoencapsulation of cinnamic aldehyde using zein nanofibers by novel needle-less electrospinning: Production, characterization and their application to reduce nitrite in sausages," Journal of Food Engineering, vol. 288, p. 110140, 2021.
  • A. Yemenicioğlu, "Zein and its composites and blends with natural active compounds: Development of antimicrobial films for food packaging," in Antimicrobial food packaging: Elsevier, 2016, pp. 503-513.
  • S. S. Silva, B. J. Goodfellow, J. Benesch, J. Rocha, J. Mano, and R. Reis, "Morphology and miscibility of chitosan/soy protein blended membranes," Carbohydrate Polymers, vol. 70, no. 1, pp. 25-31, 2007.
  • K. Ramji and R. N. Shah, "Electrospun soy protein nanofiber scaffolds for tissue regeneration," Journal of biomaterials applications, vol. 29, no. 3, pp. 411-422, 2014.
  • N. Sampath Kumar, C. Santhosh, S. Vathaluru Sudakaran, A. Deb, V. Raghavan, V. Venugopal, A. Bhatnagar, S. Bhat, and N. G. Andrews, "Electrospun polyurethane and soy protein nanofibres for wound dressing applications," Iet Nanobiotechnology, vol. 12, no. 2, pp. 94-98, 2018.
  • R. Wongkanya, P. Chuysinuan, C. Pengsuk, S. Techasakul, K. Lirdprapamongkol, J. Svasti, & P. Nooeaid, "Electrospinning of alginate/soy protein isolated nanofibers and their release characteristics for biomedical applications," Journal of Science: Advanced Materials and Devices, vol. 2, no. 3, pp. 309-316, 2017.
  • C. Vaz, L. de Graaf, R. Reis, and A. Cunha, "Soy protein-based systems for different tissue regeneration applications," in Polymer based systems on tissue engineering, replacement and regeneration: Springer, 2002, pp. 93-110.
  • S. Swain, K. Rao, and P. Nayak, "Biodegradable polymers. III. Spectral, thermal, mechanical, and morphological properties of cross‐linked furfural–soy protein concentrate," Journal of applied polymer science, vol. 93, no. 6, pp. 2590-2596, 2004.
  • C. M. Vaz, M. Fossen, R. F. Van Tuil, L. A. De Graaf, R. L. Reis, and A. M. Cunha, "Casein and soybean protein‐based thermoplastics and composites as alternative biodegradable polymers for biomedical applications," Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, vol. 65, no. 1, pp. 60-70, 2003.
  • ChemSrc. (2022, Eylül 10) [Online]. Erişim: https://www.chemsrc.com/en/cas/9010-10-0_1198690.html.
  • Q. Fang, M. Zhu, S. Yu, Sui, G., and X. Yang, "Studies on soy protein isolate/polyvinyl alcohol hybrid nanofiber membranes as multi-functional eco-friendly filtration materials," Materials Science and Engineering: B, vol. 214, pp. 1-10, 2016.
  • D. Cho, O. Nnadi, A. Netravali, and Y. L. Joo, "Electrospun hybrid soy protein/PVA fibers," Macromolecular Materials and Engineering, vol. 295, no. 8, pp. 763-773, 2010.
  • N. Varshney, A. K. Sahi, S. Poddar, and S. K. Mahto, "Soy protein isolate supplemented silk fibroin nanofibers for skin tissue regeneration: Fabrication and characterization," International Journal of Biological Macromolecules, vol. 160, pp. 112-127, 2020.
  • J. A. Gerstenhaber, R. Brodsky, R. B. Huneke, and P. I. Lelkes, "Electrospun soy protein scaffolds as wound dressings: Enhanced reepithelialization in a porcine model of wound healing," Wound Medicine, vol. 5, pp. 9-15, 2014.
  • S. Tansaz, L. Liverani, L. Vester, and A. R. Boccaccini, "Soy protein meets bioactive glass: Electrospun composite fibers for tissue engineering applications," Materials Letters, vol. 199, pp. 143-146, 2017.
  • Z. Mohebian, L. Y. Maroufi, and M. Ghorbani, "Development of a novel reinforced film based on gellan gum/cellulose nanofiber/soy protein for skin tissue engineering application," New Journal of Chemistry, vol. 45, no. 31, pp. 13814-13821, 2021.
  • S. Selvaraj, R. Thangam, and N. N. Fathima, "Electrospinning of casein nanofibers with silver nanoparticles for potential biomedical applications," International journal of biological macromolecules, vol. 120, pp. 1674-1681, 2018.
  • S. Dhasmana, S. Das, and S. Shrivastava, "Potential nutraceuticals from the casein fraction of goat’s milk," Journal of Food Biochemistry, vol. 46, no. 6, p. e13982, 2022.
  • A. B. Öztürk and Z. P. Akgüner, "İpek Fibroin/Polivinil Alkol Esaslı İlaç Taşıyıcı Yara Örtüleri," Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 24, no. 1, pp. 25-34, 2020.
  • F. Ak, "İpek fibroin kriyojellerinin sentezi ve mekanik özelliklerinin incelenmesi," Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Kimya Ana Bilim Dalı, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2013.
  • S. Çalamak, C. Erdoğdu, M. Özalp, and K. Ulubayram, "Silk fibroin based antibacterial bionanotextiles as wound dressing materials," Materials Science and Engineering: C, vol. 43, pp. 11-20, 2014.
  • N. Guziewicz, A. Best, B. Perez-Ramirez, and D. L. Kaplan, "Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies," Biomaterials, vol. 32, no. 10, pp. 2642-2650, 2011.
  • B. Çağlayan, "Elektro lif çekim yöntemi ile üretilen nanoliflerin yara örtülerinde ilaç salım sistemi olarak kullanımı," Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Tekstil Mühendisliği Ana Bilim Dalı, Ege Üniversitesi, İzmir, Türkiye, 2019.
  • Molecular Depot. (2022, Eylül 10) [Online]. Erişim: https://moleculardepot.com/product/silk-fibroin-from-bombyx-mori-silkworm-50-mg/
  • M. Farokhi, F. Mottaghitalab, Y. Fatahi, A. Khademhosseini, and D. L. Kaplan, "Overview of silk fibroin use in wound dressings," Trends in biotechnology, vol. 36, no. 9, pp. 907-922, 2018.
  • T. P. Nguyen, Q. V. Nguyen, V. -H. Nguyen, T. -H. Le, V. Q. N. Huynh, D. -V. N. Vo, Q. T. Trinh, S. Y. Kim, Q. V. Le, "Silk fibroin-based biomaterials for biomedical applications: a review," Polymers, vol. 11, no. 12, p. 1933, 2019.
  • O. Bayraktar, Ö. Malay, Y. Özgarip, and A. Batıgün, "Silk fibroin as a novel coating material for controlled release of theophylline," European Journal of Pharmaceutics and Biopharmaceutics, vol. 60, no. 3, pp. 373-381, 2005.
  • Z. X. Cai, X. M. Mo, K. H. Zhang, L. P. Fan, A. L. Yin, C. L. He, & H. S. Wang, "Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications," International journal of molecular sciences, vol. 11, no. 9, pp. 3529-3539, 2010.
  • R. Zhang, Q. Han, Y. Li, Y. Cai, X. Zhu, T. Zhang, & Y. Liu, "High antibacterial performance of electrospinning silk fibroin/gelatin film modified with graphene oxide‐sliver nanoparticles," Journal of Applied Polymer Science, vol. 136, no. 35, p. 47904, 2019.
  • C. M. Srivastava, R. Purwar, and A. P. Gupta, "Enhanced potential of biomimetic, silver nanoparticles functionalized Antheraea mylitta (tasar) silk fibroin nanofibrous mats for skin tissue engineering," International journal of biological macromolecules, vol. 130, pp. 437-453, 2019.
  • F. Cengiz Çallıoğlu and H. Kesici Güler, "Production of essential oil-based composite nanofibers by emulsion electrospinning," Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 26, no. 7, pp. 1178-1185, 2020.
  • A. A. Aldana and G. A. Abraham, "Current advances in electrospun gelatin-based scaffolds for tissue engineering applications," International journal of pharmaceutics, vol. 523, no. 2, pp. 441-453, 2017.
  • T. Li, M. Sun, and S. Wu, "State-of-the-art review of electrospun gelatin-based nanofiber dressings for wound healing applications," Nanomaterials, vol. 12, no. 5, p. 784, 2022.
  • M. Inal and G. Mülazımoğlu, "Production and characterization of bactericidal wound dressing material based on gelatin nanofiber," International journal of biological macromolecules, vol. 137, pp. 392-404, 2019.
  • N. Devi, M. Sarmah, B. Khatun, and T. K. Maji, "Encapsulation of active ingredients in polysaccharide–protein complex coacervates," Advances in colloid and interface science, vol. 239, pp. 136-145, 2017.
  • X. Xu and M. Zhou, "Antimicrobial gelatin nanofibers containing silver nanoparticles," Fibers and polymers, vol. 9, no. 6, pp. 685-690, 2008.
  • N. T. B. Linh and B.-T. Lee, "Electrospinning of polyvinyl alcohol/gelatin nanofiber composites and cross-linking for bone tissue engineering application," Journal of biomaterials applications, vol. 27, no. 3, pp. 255-266, 2012.
  • F. C. Çallıoğlu, H. K. Güler, and E. S. Çetin, "Emulsion electrospinning of bicomponent poly (vinyl pyrrolidone)/gelatin nanofibers with thyme essential oil," Materials Research Express, vol. 6, no. 12, p. 125013, 2019.
  • Y. Zhou, X. Miao, X. Lan, J. Luo, T. Luo, Z. Zhong, X. Gao, Z. Mafang, J. Ji, H. Wang, Y. Tang, "Angelica essential oil loaded electrospun gelatin nanofibers for active food packaging application," Polymers, vol. 12, no. 2, p. 299, 2020.
  • M. Li, Y. Guo, Y. Wei, A. G. MacDiarmid, and P. I. Lelkes, "Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications," Biomaterials, vol. 27, no. 13, pp. 2705-2715, 2006.
  • H. Zhang and J. Liu, "Electrospun poly (lactic-co-glycolic acid)/wool keratin fibrous composite scaffolds potential for bone tissue engineering applications," Journal of Bioactive and Compatible Polymers, vol. 28, no. 2, pp. 141-153, 2013.
  • A. Aluigi, A. Corbellini, F. Rombaldoni, and G. Mazzuchetti, "Wool-derived keratin nanofiber membranes for dynamic adsorption of heavy-metal ions from aqueous solutions," Textile Research Journal, vol. 83, no. 15, pp. 1574-1586, 2013.
  • R. D. Gazioğlu, "Keratin esaslı yüzeylerin elektroçekim yöntemiyle elde edilmesi, karakterizasyonu ve gaz sorpsiyon özelliklerinin incelenmesi," Doktora Tezi, Fen Bilimleri Enstitüsü, Lif ve Polimer Mühendisliği Ana Bilim Dalı, Bursa Teknik Üniversitesi, Bursa, Türkiye, 2018.
  • A. Aluigi, A. Varesano, A. Montarsolo, C. Vineis, F. Ferrero, G. Mazzuchetti, C. Tonin, "Electrospinning of keratin/poly (ethylene oxide) blend nanofibers," Journal of Applied Polymer Science, vol. 104, no. 2, pp. 863-870, 2007.
  • M. Zoccola, A. Aluigi, A. Patrucco, C. Vineis, F. Forlini, P. Locatelli, C. S. Maria & C. Tonin, "Microwave-assisted chemical-free hydrolysis of wool keratin," Textile Research Journal, vol. 82, no. 19, pp. 2006-2018, 2012.
  • F. Gao, W. Li, J. Deng, J. Kan, T. Guo, B. Wang, & S. Hao, "Recombinant human hair keratin nanoparticles accelerate dermal wound healing," ACS applied materials & interfaces, vol. 11, no. 20, pp. 18681-18690, 2019.
  • W. Li, F. Gao, J. Kan, J. Deng, B. Wang, and S. Hao, "Synthesis and fabrication of a keratin-conjugated insulin hydrogel for the enhancement of wound healing," Colloids and Surfaces B: Biointerfaces, vol. 175, pp. 436-444, 2019.
  • S. Xu, L. Sang, Y. Zhang, X. Wang, and X. Li, "Biological evaluation of human hair keratin scaffolds for skin wound repair and regeneration," Materials Science and Engineering: C, vol. 33, no. 2, pp. 648-655, 2013.
  • S. Ranganathan, K. Balagangadharan, and N. Selvamurugan, "Chitosan and gelatin-based electrospun fibers for bone tissue engineering," International journal of biological macromolecules, vol. 133, pp. 354-364, 2019.
  • Z. -C. Xing, J. Yuan, W.-P. Chae, I.-K. Kang, and S. -Y. Kim, "Keratin nanofibers as a biomaterial," in Int Conf Nanotechnology and Biosensors, Singapore, 2011, vol. 2, pp. 120-124.
  • A. Figoli, C. Ursino, D. O. Sanchez Ramirez, R. A. Carletto, C. Tonetti, A. Varesano, M. P. De Santo, A. Cassano, and C. Vineis, "Fabrication of electrospun keratin nanofiber membranes for air and water treatment," Polymer Engineering & Science, vol. 59, no. 7, pp. 1472-1478, 2019.
  • J. -P. Ye, J. S. Gong, C. Su, Y. G. Liu, M. Jiang, H. Pan, R. -Y. Li, Y. Geng, Z. -H. Xu, & J. S. Shi, "Fabrication and characterization of high molecular keratin based nanofibrous membranes for wound healing," Colloids and Surfaces B: Biointerfaces, vol. 194, p. 111158, 2020.
  • R. Erdem and E. Sancak, "Elektroçekim yöntemiyle elde edilen poliamid 6/kitosan bazlı nanoliflerin morfolojik özelliklerinin incelenmesi," İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, vol. 12, no. 24, pp. 53-65, 2013.
  • G. Ö. Kayan and A. Kayan, "Composite of natural polymers and their adsorbent properties on the dyes and heavy metal ions," Journal of Polymers and the Environment, vol. 29, no. 11, pp. 3477-3496, 2021.
  • E. Bolaina-Lorenzo, C. Martínez-Ramos, M. Monleón-Pradas, W. Herrera-Kao, J. V. Cauich-Rodríguez, and J. M. Cervantes-Uc, "Electrospun polycaprolactone/chitosan scaffolds for nerve tissue engineering: physicochemical characterization and Schwann cell biocompatibility," Biomedical Materials, vol. 12, no. 1, p. 015008, 2016.
  • N. Bhattarai, D. Edmondson, O. Veiseh, F. A. Matsen, and M. Zhang, "Electrospun chitosan-based nanofibers and their cellular compatibility," Biomaterials, vol. 26, no. 31, pp. 6176-6184, 2005.
  • X. Wang, L. Wang, Q. Wu, F. Bao, H. Yang, X. Qiu, & J. Chang, "Chitosan/calcium silicate cardiac patch stimulates cardiomyocyte activity and myocardial performance after infarction by synergistic effect of bioactive ions and aligned nanostructure," ACS applied materials & interfaces, vol. 11, no. 1, pp. 1449-1468, 2018.
  • I. K. Shim, W. H. Suh, S. Y. Lee, S. H. Lee, S. J. Heo, M. C. Lee, & S. J. Lee, "Chitosan nano‐/microfibrous double‐layered membrane with rolled‐up three‐dimensional structures for chondrocyte cultivation," Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, vol. 90, no. 2, pp. 595-602, 2009.
  • H.-S. Jung, M. H. Kim, J. Y. Shin, S. R. Park, J.-Y. Jung, and W. H. Park, "Electrospinning and wound healing activity of β-chitin extracted from cuttlefish bone," Carbohydrate polymers, vol. 193, pp. 205-211, 2018.
  • G. Sandri, D. Miele, A. Faccendini, M. C. Bonferoni, S. Rossi, P. Grisoli, A. Taglietti, M. Ruggeri, G. Bruni, B. Vigani, F. Ferrari, "Chitosan/glycosaminoglycan scaffolds: the role of silver nanoparticles to control microbial infections in wound healing," Polymers, vol. 11, no. 7, p. 1207, 2019.
  • F. Tao, Y. Cheng, X. Shi, H. Zheng, Y. Du, W. Xiang, & H. Deng, "Applications of chitin and chitosan nanofibers in bone regenerative engineering," Carbohydrate polymers, vol. 230, p. 115658, 2020.
  • R. Jayakumar, M. Prabaharan, S. Nair, and H. Tamura, "Novel chitin and chitosan nanofibers in biomedical applications," Biotechnology advances, vol. 28, no. 1, pp. 142-150, 2010.
  • S. Bayat, N. Amiri, E. Pishavar, F. Kalalinia, J. Movaffagh, and M. Hashemi, "Bromelain-loaded chitosan nanofibers prepared by electrospinning method for burn wound healing in animal models," Life sciences, vol. 229, pp. 57-66, 2019.
  • F. Liu, Y. Liu, Z. Sun, D. Wang, H. Wu, L. Du, & D. Wang, "Preparation and antibacterial properties of ε-polylysine-containing gelatin/chitosan nanofiber films," International journal of biological macromolecules, vol. 164, pp. 3376-3387, 2020.
  • E. Uğurlu, Ö. Duysak, E. İ. Saygılı, U. Sinem, and S. Sayın, "Denizel Omurgasız Canlılardan Elde Edilen Kolajenler ve Kullanım Alanları," Ecological Life Sciences, vol. 15, no. 1, pp. 24-35, 2020.
  • H. Bahria, "Electrospinning of collagen: Formation of biomedical scaffold," Adv. Res. Text. Eng, vol. 2, p. 1017, 2017.
  • D. Zhang, X. Wu, J. Chen, and K. Lin, "The development of collagen based composite scaffolds for bone regeneration," Bioactive materials, vol. 3, no. 1, pp. 129-138, 2018.
  • Z. Mbese, S. Alven, and B. A. Aderibigbe, "Collagen-based nanofibers for skin regeneration and wound dressing applications," Polymers, vol. 13, no. 24, p. 4368, 2021.
  • W. He, T. Yong, W. E. Teo, Z. Ma, and S. Ramakrishna, "Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering," Tissue engineering, vol. 11, no. 9-10, pp. 1574-1588, 2005.
  • V. Irawan, T.-C. Sung, A. Higuchi, and T. Ikoma, "Collagen scaffolds in cartilage tissue engineering and relevant approaches for future development," Tissue engineering and regenerative medicine, vol. 15, no. 6, pp. 673-697, 2018.
  • M. Hromadka, J. B. Collins, C. Reed, L. Han, K. K. Kolappa, B. A. Cairns, T. Andrady, J. A. van Aalst, "Nanofiber applications for burn care," Journal of burn care & research, vol. 29, no. 5, pp. 695-703, 2008.
  • S. Liao, B. Li, Z. Ma, H. Wei, C. Chan, and S. Ramakrishna, "Biomimetic electrospun nanofibers for tissue regeneration," Biomedical materials, vol. 1, no. 3, p. R45, 2006.
  • J. Lin, C. Li, Y. Zhao, J. Hu, and L.-M. Zhang, "Co-electrospun nanofibrous membranes of collagen and zein for wound healing," ACS applied materials & interfaces, vol. 4, no. 2, pp. 1050-1057, 2012.
  • M. P. Prabhakaran, E. Vatankhah, and S. Ramakrishna, "Electrospun aligned PHBV/collagen nanofibers as substrates for nerve tissue engineering," Biotechnology and bioengineering, vol. 110, no. 10, pp. 2775-2784, 2013.
  • M. Yüccer, R. Temizkan, and C. Caner, "Fonksiyonel gıda olarak yumurta: bileşenleri ve fonksiyonel özellikleri," Akademik Gıda, vol. 10, no. 4, pp. 70-76, 2012.
  • E. C. Li-Chan, W. D. Powrie, and S. Nakai, "The chemistry of eggs and egg products," in Egg science and technology, W. J. Stadelman and O. J. Cotterill Eds., 4th ed. New York: 711 Third Avenue, 2013, pp. 105-175.
  • S. Tanabe, S. Tesaki, and M. Watanabe, "Producing a low ovomucoid egg white preparation by precipitation with aqueous ethanol," Bioscience, biotechnology, and biochemistry, vol. 64, no. 9, pp. 2005-2007, 2000.
  • Y. Shaabani, M. Sirousazar, and F. Kheiri, "Crosslinked swellable clay/egg white bionanocomposites," Applied Clay Science, vol. 126, pp. 287-296, 2016.
  • M. P. Mani and S. K. Jaganathan, "Blood compatibility assessments of novel electrospun PVA/egg white nanocomposite membrane," Bioinspired, Biomimetic and Nanobiomaterials, vol. 7, no. 4, pp. 213-218, 2018.
  • X. Dong and Y. Q. Zhang, "An insight on egg white: From most common functional food to biomaterial application," Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 109, no. 7, pp. 1045-1058, 2021.
  • P. Zahedi and M. Fallah-Darrehchi, "Electrospun egg albumin-PVA nanofibers containing tetracycline hydrochloride: Morphological, drug release, antibacterial, thermal and mechanical properties," Fibers and Polymers, vol. 16, no. 10, pp. 2184-2192, 2015.
  • Y. Li, H. Jiang, and K. Zhu, "Encapsulation and controlled release of lysozyme from electrospun poly (ε-caprolactone)/poly (ethylene glycol) non-woven membranes by formation of lysozyme–oleate complexes," Journal of Materials Science: Materials in Medicine, vol. 19, no. 2, pp. 827-832, 2008.
  • H. Jiang, Y. Hu, Y. Li, P. Zhao, K. Zhu, and W. Chen, "A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents," Journal of controlled release, vol. 108, no. 2-3, pp. 237-243, 2005.
  • T. G. Kim, D. S. Lee, and T. G. Park, "Controlled protein release from electrospun biodegradable fiber mesh composed of poly (ɛ-caprolactone) and poly (ethylene oxide)," International journal of pharmaceutics, vol. 338, no. 1-2, pp. 276-283, 2007.
  • N. Charernsriwilaiwat, P. Opanasopit, T. Rojanarata, and T. Ngawhirunpat, "Lysozyme-loaded, electrospun chitosan-based nanofiber mats for wound healing," International Journal of Pharmaceutics, vol. 427, no. 2, pp. 379-384, 2012.
  • P. Tonglairoum, T. Ngawhirunpat, T. Rojanarata, and P. Opanasopit, "Lysozyme-immobilized electrospun PAMA/PVA and PSSA-MA/PVA ion-exchange nanofiber for wound healing," Pharmaceutical development and technology, vol. 20, no. 8, pp. 976-983, 2015.
  • H. R. Ibrahim, A. Kato, and K. Kobayashi, "Antimicrobial effects of lysozyme against gram-negative bacteria due to covalent binding of palmitic acid," Journal of Agricultural and Food Chemistry, vol. 39, no. 11, pp. 2077-2082, 1991.
  • N. H. Silva, P. Garrido-Pascual, C. Moreirinha, A. Almeida, T. Palomares, A. Alonso-Varona, C. Vilela, & C. S. Freire, "Multifunctional nanofibrous patches composed of nanocellulose and lysozyme nanofibers for cutaneous wound healing," International Journal of Biological Macromolecules, vol. 165, pp. 1198-1210, 2020.
  • K. Feng, P. Wen, H. Yang, N. Li, W. Y. Lou, M. H. Zong, & H. Wu, "Enhancement of the antimicrobial activity of cinnamon essential oil-loaded electrospun nanofilm by the incorporation of lysozyme," RSC advances, vol. 7, no. 3, pp. 1572-1580, 2017.
There are 119 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology, Metrology, Applied and Industrial Physics, Chemical Engineering
Journal Section Makaleler
Authors

Mustafa Geysoğlu 0000-0002-7686-357X

Funda Cengiz Çallıoğlu 0000-0002-6614-3616

Publication Date November 25, 2022
Published in Issue Year 2022 Volume: 17 Issue: 2

Cite

IEEE M. Geysoğlu and F. Cengiz Çallıoğlu, “Elektro Lif Çekiminde Kullanılan Proteinler ve Yumurta Akı Esaslı Nanolif Üretimi”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 17, no. 2, pp. 496–521, 2022, doi: 10.29233/sdufeffd.1173731.