Research Article
BibTex RIS Cite

3D Tissue Scaffold Printing On Custom Artificial Bone Applications

Year 2014, Volume: 18 Issue: 3, 1 - 9, 04.01.2015

Abstract

Production of defect-matching scaffolds is the most critical step in custom artificial bone applications. Three dimensional printing (3DP) is one of the best techniques particularly for custom designs on artificial bone applications because of the high controllability and design independency. Our long-term aim is to implant an artificial custom bone that is cultured with patient's own mesenchymal stem cells after determining defect architecture on patient's bone by using CT-scan and printing that defect-matching 3D scaffold with appropriate nontoxic materials. In this study, preliminary results of strength and cytotoxicity measurements of 3D printed scaffolds with modified calcium sulfate compositepowder (MCSCP) were presented. CAD designs were created and MCSCP were printed by a 3D printer (3DS, Visijet, PXL Core). Some samples were covered with salt solution in order to harden the samples. MCSCP and salt coated MCSCP were the two experimental groups in this study. Cytotoxicity and mechanical experiments were performed after surface examination withscanning electron microscope (SEM) and light microscope. Tension tests were performed for MCSCP and salt coated MCSCP samples. The 3D scaffolds were sterilized with ethylene oxide gas sterilizer, ventilated and conditioned with DMEM (10% FBS). L929 mouse fibroblast cells were cultured on scaffolds (3 repetitive) and cell viability was determined using MTT analysis. According to the mechanical results, the MCSCP group stands until average 71,305 N, while salt coated MCSCP group stands until 21,328N. Although the strength difference between two groups is statistically significant (p=0.001, Mann-Whitney U), elastic modulus is not (MCSCP=1,186Pa, salt coated MCSCP=1,169Pa, p=0.445). Cell viability (MTT analysis) results on day 1, 3, and 5 demonstrated thatscaffolds hadno toxic effect to the L929 mouse fibroblast cells. Consequently, 3D printed samples with MCSCP could potentially be a strong alternative (biocompatible) for current custom made scaffolds. Desired strength can be acquired with cell inoculation and cultivation of samples in a bioreactor for ossification

References

  • Ahn, S., H., Kim, Y., B., Lee, H., J., Kim, G., H., 2012. A New Hybrid Scaffold Constructed of Solid Freeform- Fabricated PCL Struts and Collagen Struts for Bone Tissue
  • Properties, and Cellular Activity, Journal of Materials Chemistry, 22, 15901–15909.
  • Mechanical Andrews, D., L., Scholes, G., D., Wiederrecht, G., P., 2011.
  • Nanoscience and Technology, Volume 2, ISBN: 978- 0-12-374396-1.
  • Comprehensive Bandi, V., Dufva , M., Farny, S., 2013. Additive Manufacturing–Printing The Future. Bit Bang 5: Changing Global Landscapes – Role of Policy Making and Innovation Capability, 116-143.
  • Becker, S. T., Bolte, H., Schu¨nemann, K., Seitz, H., Bara,J., J., Beck-Broichsitter, B., E., Russo, P., A., J., Wiltfang, J., Warnke, P., H., 2012. Endocultivation: The Influence of Delayed vs. Simultaneous Application Of BMP-2 onto individually Formed Hydroxyapatite Matrices for Heterotopic Bone induction, Int. J. Oral Maxillofac. Surg., 41, 1153– 1160.
  • Bose, S., Roy, M., Bandyopadhyay, A., 2012. Recent Advances in The Bone Tissue Engineering Scaffolds. Trends in Biology, 30(10).
  • Bose, S., Tarafder, S., Banerjee, S., S., Davies, N., M., Bandyopadhyay, A., 2011. Understanding In Vivo Response and Mechanical Property Variation in Mgo, Sro And SiO2 Doped B-TCP, Bone, 48(6); 1282- 1290.
  • Brydone, A.,S., Meek, D., Maclaine, S., 2010. Bone Grafting, Orthopaedic Biomaterials, and The Clinical Need for Bone Engineering, Engineering in Medicine, Vol. 224, 1329-1342.
  • Bulut, M., Karakurt, L., 2011. Seramikler, Türk Ortopedi ve Travmatoloji Birliği Derneği Dergisi, 10(2):87-95.
  • Butscher, A., Bohner, M., Hofmann, S., Gauckler, L., Müller,
  • Approaches to Bone Tissue Engineering in Powder- Based
  • Biomaterialia, 7, 907-920. and
  • Material Three-Dimentional Printing,
  • Acta Butscher, A., Bohner, M., Doebelin, N., Galea, L., Loeffel, O., Müller, R., 2013. Moisture Based Three- Dimensional Structures of for
  • Biomaterialia 9, 5369–5378. Calcium Engineering, Scaffold
  • Acta Butscher, A., Bohner, M., Roth, C., Ernstberger, A., Heuberger, R., Doebelin, N., Rohr, P., R., Müller, R, 2012. Printability of Calcium Phosphate Powders for
  • Engineering Scaffolds, Acta Biomaterialia, 8, 373- 385. Printing of
  • Tissue Carrin, S. V., Garnero, P., Delmas, P. D., 2006. The Role of Collagen in Bone Strength, Osteoporos Int, 17: 319–336.
  • Chung, H., J., Park, T., G., 2007. Surface Engineered and Drug Releasing Pre-Fabricated Scaffoldsfor Tissue Engineering, Advanced Drug Delivery Reviews 59, 249–262.
  • Eslaminejad, M., B., Faghihi, F., 2011. Mesenchymal Stem Cell-Based Bone Engineering for Bone Regeneration, Regenerative Medicine and Tissue Engineering - Cells and Biomaterials, ISBN: 978- 953-307-663-8.
  • Inzana, J., Olvera, D., Fuller, S., Kelly, J., Graeve, O., Edward, S., Kates, S., Awad, H., 2014. 3D Printing of Composite
  • Scaffolds for Bone Regeneration, Biomaterials, 1-9. Phosphate and
  • Collagen Jin, C.Y., Zhu, B.S., Wang, X.F., Lu, Q.H., 2008. Cytotoxicity of Titanium Dioxide Nanoparticles in Mouse Fibroblast Cells, Chem. Res. Toxicol, Vol. 21, 1871–1877.
  • Karageorgiou, V., Kaplan, D., 2005. Porosity of 3D Biomaterial
  • Biomaterials, 26, 5474–5491. and
  • Osteogenesis, Karaman, O., Kumar, A., Moeinzadeh, S., He, X., Cui, T., Jabbari, E., 2013. Effect of Surface Modification of Nanofibres with Glutamic Acid Peptide on Calcium Phosphate
  • Differentiation of Marrow Stromal Cells, Journal of Tissue Engineering And Regenerative Medicine, DOI: 10.1002/term.1775. and
  • Osteogenic Keaveny, T.M., Morgan, E.F., Yeh, O.C., 2004. Chapter 8: Bone Mechanics, Mechanics of The Human Body, Mcgraw-Hill.
  • Kruth, P.P., 1991. Material Incress Manufacturing by Rapid Prototyping Techniques, CIRP Annals Manufacturing Technology, 40(2), 603–614.
  • Leukers, B., Gülkan, H., Irsen, S.H., Milz, S., Tille, C., Schieker, M., Seitz, H., 2005. Hydroxyapatite Scaffolds for Bone Tissue Engineering Made by 3D Printing, Journal of Materials Science: Materials in MEdicine, 16, 1121-1124.
  • Li, X., Cui, R., Sun, L., Aifantis, K., E., Fan, Y., Feng, Q., Cui, F., Watari, F., 2014. 3D Printed Biopolymers for Tissue
  • Journal of Polymer Science, ID 829145. Application,
  • International Lichte, P., Pape, H., Pufe, T., Kobbe, P., Fischer, H., 2011. Scaffolds For Bone Healing: Concepts, Materials and Evidance, Injury, 42, 569-573.
  • Reilly, D.T., Burstein, A.H., 1975. The Elastic And Ultimate Properties of Compact Bone Tissue, J. Biomech., 8:393–405.
  • Sidqui, M., Collin, P., Vitte, C., Forest, N., 1995. Osteoblast Adherence and Resorption Activity of Isolated
  • Hemihydrate, Biomaterials, 16, 1327-1332. on Calcium
  • Sulfate Subia, B., Kundu, J., Kundu, S.C., 2010. Biomaterial Scaffold Fabrication Techniques for Potential Tissue Engineering
  • Chapter 7, Daniel Eberli (Ed.), ISBN: 978-953-307- 079-7. Tissue
  • Engineering, Suslu, A., Albayrak, A.Z., Urkmez, A.S., Bayır, E., Cocen, U., 2014. Effect of Surfactant Types on The Biocompatibility
  • Composite Nanofibers, J Mater Sci: Mater Med., DOI 10.1007/s10856-014-5286-1.
  • HAp/PHBV Manufacturing, ISRN
  • Mechanical Wu, H.D., Lee, S.Y., Poma, M., Wu, J.Y., Wang, D.C., Yang, J.C., 2012. A Novel Resorbable α-Calcium Sulfate
  • Phosphate Bone Substitute for Dental Implantation Surgery, Materials Science and Engineering C, 32, 440-446.
  • Calcium Zhou, Z., Buchanan, F., Mitchell, C, Dunne, N., 2014. Printability of Calcium Phosphate: Calcium Sulfate Powders For The Application of Tissue Engineered Bone Scaffolds Using the 3D Printing Techique, Materials Science and Engineering C, 38, 1-10.

Kişiye Özel Yapay Kemik Uygulamaları için 3B Yazdırma Tekniği Kullanılarak Doku İskelesi Oluşturulması

Year 2014, Volume: 18 Issue: 3, 1 - 9, 04.01.2015

Abstract

Kişiye özel yapay kemik uygulamalarında kritik basamak, defekte uygun iskelenin üretilmesidir. Tasarım özgürlüğü ve yüksek kontrol edilebilirlik nedeniyle, 3B yazdırma bilhassa kişiye özel uygulamalar için en uygun yöntemdir. Bu amaçla, 3B yazdırma tekniği kullanılarak mekanik özellikleri kemiğe uygun, toksik olmayan ve kemik doku oluşumunu destekleyecek iskele üretimi oldukça önemlidir. Uzun vadede hedefimiz CT taramayla hedef dokuda belirlenen defekte uygun geometride, uygun malzemeyle 3B iskele oluşturulması ve üzerine kişiden alınan mezankimal kök hücre ekilmesi ile oluşturulan nihai kemik dokunun hastaya aktarılmasıdır. Çalışmamızda, modifiye toz kompozit kullanılarak 3B yazdırılmış iskelelerin mukavemet sitotoksisite ölçümlerinin sonuçları sunulmuştur. Bilgisayarda oluşturduğumuz 3B tasarımlar, modifiye bir kompozit toz kullanılarak 3B yazıcı ile yazdırılmıştır. Örneklerin yarısı sertleştirmek için tuz çözeltisi ile kaplanıp kurutularak iki deney grubu oluşturulmuş, SEM ve ışık mikroskobu altında yüzey özellikleri incelendikten sonra sitotoksisite ve mekanik testleri yapılmıştır. Çekme testleri kontrol grubunda 6, tuzlu grupta 7 tekrarlı yapılmış, elastik modül hesaplanmıştır. Sitotoksisite için 3B iskeleler etilen oksit gaz sterilizatörüyle sterilizayona tabi tutulduktan sonra havalandırılmış ve DMEM (%10 FBS) ile şartlandırılmıştır. L929 fare fibroblast hücre hattı kullanılarak, iskelelere üç tekrarlı ekimler yapılmış ve MTT ile hücre canlılığı belirlenmiştir.
Mekanik test sonuçları incelendiğinde kontrol grubunun ortalama 71,305N'a (n=6) dayanabilmekte olduğu, tuzlu grubun ortalama 21,328N'a (n=7) dayanabilmekte olduğu gözlemlenmiştir. Her ne kadar dayanıklılık açısından istatistiksel olarak anlamlı bir fark bulunmuş (p=0,001, Mann-Whitney U) olsada, elastik modülleri arasındaki fark istatiksel olarak anlamlı bulunmamıştır (kontrol=1,186Pa, tuzlu=1,169Pa, p=0,445). MTT sonuçları incelendiğinde de her iki deney grubundaki iskele malzemelerinin toksik olmadığı, 1. 3. ve 5. gün analizlerine göre hücre canlılığının olumsuz etkilemediği görülmüştür. Dolayısıyla, modifiye toz ile 3B yazdırılmış numunelerin sitotoksik açıdan uygun olduğu (biyouyumlu) gözlemlenmiştir. Hedeflenen mukavemete kemik hücreleri ekimi ve numunenin biyoreaktörde kemikleştirilmesiyle ulaşılabileceği düşünülmektedir.  

References

  • Ahn, S., H., Kim, Y., B., Lee, H., J., Kim, G., H., 2012. A New Hybrid Scaffold Constructed of Solid Freeform- Fabricated PCL Struts and Collagen Struts for Bone Tissue
  • Properties, and Cellular Activity, Journal of Materials Chemistry, 22, 15901–15909.
  • Mechanical Andrews, D., L., Scholes, G., D., Wiederrecht, G., P., 2011.
  • Nanoscience and Technology, Volume 2, ISBN: 978- 0-12-374396-1.
  • Comprehensive Bandi, V., Dufva , M., Farny, S., 2013. Additive Manufacturing–Printing The Future. Bit Bang 5: Changing Global Landscapes – Role of Policy Making and Innovation Capability, 116-143.
  • Becker, S. T., Bolte, H., Schu¨nemann, K., Seitz, H., Bara,J., J., Beck-Broichsitter, B., E., Russo, P., A., J., Wiltfang, J., Warnke, P., H., 2012. Endocultivation: The Influence of Delayed vs. Simultaneous Application Of BMP-2 onto individually Formed Hydroxyapatite Matrices for Heterotopic Bone induction, Int. J. Oral Maxillofac. Surg., 41, 1153– 1160.
  • Bose, S., Roy, M., Bandyopadhyay, A., 2012. Recent Advances in The Bone Tissue Engineering Scaffolds. Trends in Biology, 30(10).
  • Bose, S., Tarafder, S., Banerjee, S., S., Davies, N., M., Bandyopadhyay, A., 2011. Understanding In Vivo Response and Mechanical Property Variation in Mgo, Sro And SiO2 Doped B-TCP, Bone, 48(6); 1282- 1290.
  • Brydone, A.,S., Meek, D., Maclaine, S., 2010. Bone Grafting, Orthopaedic Biomaterials, and The Clinical Need for Bone Engineering, Engineering in Medicine, Vol. 224, 1329-1342.
  • Bulut, M., Karakurt, L., 2011. Seramikler, Türk Ortopedi ve Travmatoloji Birliği Derneği Dergisi, 10(2):87-95.
  • Butscher, A., Bohner, M., Hofmann, S., Gauckler, L., Müller,
  • Approaches to Bone Tissue Engineering in Powder- Based
  • Biomaterialia, 7, 907-920. and
  • Material Three-Dimentional Printing,
  • Acta Butscher, A., Bohner, M., Doebelin, N., Galea, L., Loeffel, O., Müller, R., 2013. Moisture Based Three- Dimensional Structures of for
  • Biomaterialia 9, 5369–5378. Calcium Engineering, Scaffold
  • Acta Butscher, A., Bohner, M., Roth, C., Ernstberger, A., Heuberger, R., Doebelin, N., Rohr, P., R., Müller, R, 2012. Printability of Calcium Phosphate Powders for
  • Engineering Scaffolds, Acta Biomaterialia, 8, 373- 385. Printing of
  • Tissue Carrin, S. V., Garnero, P., Delmas, P. D., 2006. The Role of Collagen in Bone Strength, Osteoporos Int, 17: 319–336.
  • Chung, H., J., Park, T., G., 2007. Surface Engineered and Drug Releasing Pre-Fabricated Scaffoldsfor Tissue Engineering, Advanced Drug Delivery Reviews 59, 249–262.
  • Eslaminejad, M., B., Faghihi, F., 2011. Mesenchymal Stem Cell-Based Bone Engineering for Bone Regeneration, Regenerative Medicine and Tissue Engineering - Cells and Biomaterials, ISBN: 978- 953-307-663-8.
  • Inzana, J., Olvera, D., Fuller, S., Kelly, J., Graeve, O., Edward, S., Kates, S., Awad, H., 2014. 3D Printing of Composite
  • Scaffolds for Bone Regeneration, Biomaterials, 1-9. Phosphate and
  • Collagen Jin, C.Y., Zhu, B.S., Wang, X.F., Lu, Q.H., 2008. Cytotoxicity of Titanium Dioxide Nanoparticles in Mouse Fibroblast Cells, Chem. Res. Toxicol, Vol. 21, 1871–1877.
  • Karageorgiou, V., Kaplan, D., 2005. Porosity of 3D Biomaterial
  • Biomaterials, 26, 5474–5491. and
  • Osteogenesis, Karaman, O., Kumar, A., Moeinzadeh, S., He, X., Cui, T., Jabbari, E., 2013. Effect of Surface Modification of Nanofibres with Glutamic Acid Peptide on Calcium Phosphate
  • Differentiation of Marrow Stromal Cells, Journal of Tissue Engineering And Regenerative Medicine, DOI: 10.1002/term.1775. and
  • Osteogenic Keaveny, T.M., Morgan, E.F., Yeh, O.C., 2004. Chapter 8: Bone Mechanics, Mechanics of The Human Body, Mcgraw-Hill.
  • Kruth, P.P., 1991. Material Incress Manufacturing by Rapid Prototyping Techniques, CIRP Annals Manufacturing Technology, 40(2), 603–614.
  • Leukers, B., Gülkan, H., Irsen, S.H., Milz, S., Tille, C., Schieker, M., Seitz, H., 2005. Hydroxyapatite Scaffolds for Bone Tissue Engineering Made by 3D Printing, Journal of Materials Science: Materials in MEdicine, 16, 1121-1124.
  • Li, X., Cui, R., Sun, L., Aifantis, K., E., Fan, Y., Feng, Q., Cui, F., Watari, F., 2014. 3D Printed Biopolymers for Tissue
  • Journal of Polymer Science, ID 829145. Application,
  • International Lichte, P., Pape, H., Pufe, T., Kobbe, P., Fischer, H., 2011. Scaffolds For Bone Healing: Concepts, Materials and Evidance, Injury, 42, 569-573.
  • Reilly, D.T., Burstein, A.H., 1975. The Elastic And Ultimate Properties of Compact Bone Tissue, J. Biomech., 8:393–405.
  • Sidqui, M., Collin, P., Vitte, C., Forest, N., 1995. Osteoblast Adherence and Resorption Activity of Isolated
  • Hemihydrate, Biomaterials, 16, 1327-1332. on Calcium
  • Sulfate Subia, B., Kundu, J., Kundu, S.C., 2010. Biomaterial Scaffold Fabrication Techniques for Potential Tissue Engineering
  • Chapter 7, Daniel Eberli (Ed.), ISBN: 978-953-307- 079-7. Tissue
  • Engineering, Suslu, A., Albayrak, A.Z., Urkmez, A.S., Bayır, E., Cocen, U., 2014. Effect of Surfactant Types on The Biocompatibility
  • Composite Nanofibers, J Mater Sci: Mater Med., DOI 10.1007/s10856-014-5286-1.
  • HAp/PHBV Manufacturing, ISRN
  • Mechanical Wu, H.D., Lee, S.Y., Poma, M., Wu, J.Y., Wang, D.C., Yang, J.C., 2012. A Novel Resorbable α-Calcium Sulfate
  • Phosphate Bone Substitute for Dental Implantation Surgery, Materials Science and Engineering C, 32, 440-446.
  • Calcium Zhou, Z., Buchanan, F., Mitchell, C, Dunne, N., 2014. Printability of Calcium Phosphate: Calcium Sulfate Powders For The Application of Tissue Engineered Bone Scaffolds Using the 3D Printing Techique, Materials Science and Engineering C, 38, 1-10.
There are 45 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Özel Sayı
Authors

Betül Aldemir This is me

Serkan Dikici

Şükrü Öztürk This is me

Ozan Kahraman This is me

Aylin Ürkmez This is me

Hakan Oflaz This is me

Publication Date January 4, 2015
Published in Issue Year 2014 Volume: 18 Issue: 3

Cite

APA Aldemir, B., Dikici, S., Öztürk, Ş., Kahraman, O., et al. (2015). 3D Tissue Scaffold Printing On Custom Artificial Bone Applications. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 18(3), 1-9.
AMA Aldemir B, Dikici S, Öztürk Ş, Kahraman O, Ürkmez A, Oflaz H. 3D Tissue Scaffold Printing On Custom Artificial Bone Applications. J. Nat. Appl. Sci. January 2015;18(3):1-9.
Chicago Aldemir, Betül, Serkan Dikici, Şükrü Öztürk, Ozan Kahraman, Aylin Ürkmez, and Hakan Oflaz. “3D Tissue Scaffold Printing On Custom Artificial Bone Applications”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 18, no. 3 (January 2015): 1-9.
EndNote Aldemir B, Dikici S, Öztürk Ş, Kahraman O, Ürkmez A, Oflaz H (January 1, 2015) 3D Tissue Scaffold Printing On Custom Artificial Bone Applications. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 18 3 1–9.
IEEE B. Aldemir, S. Dikici, Ş. Öztürk, O. Kahraman, A. Ürkmez, and H. Oflaz, “3D Tissue Scaffold Printing On Custom Artificial Bone Applications”, J. Nat. Appl. Sci., vol. 18, no. 3, pp. 1–9, 2015.
ISNAD Aldemir, Betül et al. “3D Tissue Scaffold Printing On Custom Artificial Bone Applications”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 18/3 (January 2015), 1-9.
JAMA Aldemir B, Dikici S, Öztürk Ş, Kahraman O, Ürkmez A, Oflaz H. 3D Tissue Scaffold Printing On Custom Artificial Bone Applications. J. Nat. Appl. Sci. 2015;18:1–9.
MLA Aldemir, Betül et al. “3D Tissue Scaffold Printing On Custom Artificial Bone Applications”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 18, no. 3, 2015, pp. 1-9.
Vancouver Aldemir B, Dikici S, Öztürk Ş, Kahraman O, Ürkmez A, Oflaz H. 3D Tissue Scaffold Printing On Custom Artificial Bone Applications. J. Nat. Appl. Sci. 2015;18(3):1-9.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.