BibTex RIS Cite

Numerical Solutions of Fractional Order Autocatalytic Chemical Reaction Model

Year 2017, Volume: 21 Issue: 1, 165 - 172, 15.04.2017
https://doi.org/10.19113/sdufbed.24679

Abstract

The main concerns of this paper is the study and the development of numerical methods for solving fractional order autocatalytic chemical reaction model problem. This is a nonlinear fractional order differential equation of fractional order , where . Three different (explicit and implicit) schemes based on multistep methods, nonstandard finite difference method and the product integration (PI) method are developed. The PI scheme enjoys the integral equation formulation of the model problem. The accuracy, efficiency and comparison of the developed methods are demonstrated in numerical results.

References

  • [1] Arikoglu, A., Ozkoli I., 2007. Solution of fractional differential equation by using differential transforms method Chaos Solitions Fractals; 34(5) (2007),1473-1481.
  • [2] Arslan D., 2013. Numerical Solutions of Fractional Order Differential Equations Systems, Thesis, SDU Graduate School of Natural and Applied Sciene, Isparta, Turkey, 57p.
  • [3] Baleanu, D., Mohammadi, H., Rezapour, S., 2012. Positive solutions of an initial value problem for nonlinear fractional differential equations. Abstract and Applied Analalysis, Art. ID 837437, (2012),7p.
  • [4] Bueno-Orovio, A., Kay, D., Grau, V., Rodriguez, B., Burrage,K.,2013. Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarisation, Tech. Rep. OCCAM 13/35, Oxford Centre for Collaborative Applied Mathematics, Oxford 464 (UK),
  • [5] Cafagna, D., Grassi, G.,2012. Observer-based projective synchronization of fractional systems via a scalar signal: Application to hyperchaotic Rossler systems, Nonlinear Dynam., 68 (1-2) (2012) 117–128.
  • [6] Caponetto, R., Maione, G., Pisano, A., Rapaic, M. M. R., Usai, E., 2013. Analysis and shaping of the self-sustained oscillations in relay controlled fractional-order systems, Fractional Calculus and Applied Analysis 16 (1) (2013) 93-108.
  • [7] Deng, W.H., Li, W.H., 2005. Chaos synchronization of the fractional Lü System, Physica A, 353, (2005) 61-72.
  • [8] Diethelm, K., Freed, A. D.,1998. The FracPECE subroutine for the numerical solution of differantial equations of fractional order, in Forschung und Wissenschaftliches Rechmen, 1999, 57-71.
  • [9] Diethelm K., Ford, N.J., Freed, A.D., 2002. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics., 29(1-4) (2002) 3-22.
  • [10] Diethelm K., Ford, N.J., Freed, A.D., Luchko, Y.,2005. Algorithms for the fractional calculus: a selection of numerical methods. Computer methods in applied mechanics and engineering, 194 (6) (2005) 743-773.
  • [11] Lubich, C., 1986. Discretized fractional calculus. SIAM J. Math. Anal., 17(3) (1986) 704-719.
  • [12] Matignon, D., D’andrea-Novel, B.,1997, Observer-based controllers for fractional differential equations systems, in Conference on Decision and Control San Diego, CA, December, SIAM, IEEE-CSS, 4967-4972.
  • [13] Erturk, V.S., Momani, S., Odibat, Z., 2008. Application of generalized differential transform method to multi-order fractional diffrential equations. Commun. Nonlinear Sci. Numer. Simul. 13(8) (2008)1642-1654.
  • [14] V.S. Erturk, S. Momani, Z. Odibat. (2008). Application of generalized differential transform method to multi-order fractional diffrential equations. Commun. Nonlinear Sci. Numer. Simul. 13(8)(2008) 1642-1654.
  • [15] Galeone, L., Garrappa, R., 2006. On multisep methods for differential equations of fractional order, Mediterr. J. Math, 3(2006)565-580.
  • [16] Galeone, L., Garrappa, R., 2008. Fractional Adams-Moulton methods, Math. Comput. Simulation,79 (2008)1358-1367.
  • [17] Galeone, L., Garrappa, R., 2009. Explicit methods for fractional differential equations and their stability properties, J. Comput. Appl. Math., 228(2009)548-560.
  • [18] Garrappa, R., 2009. On some explicit Adams multistep methods for fractional differential equations J. Comput. Appl. Math., 229(2009)392-399.
  • [19] Garrappa R., 2010. On linear stability of predictor–corrector algorithms for fractional differential equations, Int. J. Comput. Math. 87(2010) 2281-2290.
  • [20] Garrappa R., Popolizio, M., 2011. On accurate product integration rules for linear fractional differential equations, J. Comput. Appl. Math., 235(2011)1085-1097.
  • [21] Kilbas,A.A., Srivastava,H.M., Trujillo,J. J.,2006. Theory and applications of fractional differential equations,North-Holland Mathematics Studies, 204(2006)135-209.
  • [22] C. Li, C. Ye., 2011. Numerical approaches to fractional calculus and fractional ordinary differential equation, J. Comput. Phys. 230(2011) 3352-3368.
  • [23] Luchko, Y., Gorenflo, R., 1999. An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math. Vietnam .24(2) (1999) 207-233.
  • [24] Lubich, C., 1986. Discretized fractional calculus, SIAM J. Math. Anal. 17 (1986) 704-719.
  • [25] Magin, R. L.,2010. Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl. 59 (5) (2010)1586-1593.
  • [26] Mickens, R.E., Smith, A., 1990. Finite-difference models of ordinary differential equations: influence of denominator functions. J. Franklin Inst.,327, (1990)143-149.
  • [27] Mickens, R.E.., 2007. Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition, Numer. Methods Partial Differential Equations 23(3) (2007) 672-691.
  • [28] Mickens, R.E., 1993. Nonstandard finite difference models of differential equations. River Edge, NJ: World Scientific Publishing Co. Inc..
  • [29] Miller, K.S., Ross, B.,1993. An Introduction to the Fractional Calculus and Fractional Differential Equations, John Willey & Sons, New York.
  • [30] Momani,S., Odibat, Z., 2007. Comparison between homotopy perturbation method and the variational iteration method for linear fractional partial differential equations, Computers and Math. Appl., 54(7)(2007)910-919.
  • [31] Momani,S., Odibat,Z., 2006. Analytical approach to linear fractional partial differential equations arising in fluid mechanics, Phys. Lett. A, 355 (2006) 271-279.
  • [32] Oldham, K.B., Spanier, J.,1974. The Fractional Calculus, Mathematics in Science and Engineering, Academic Press,New York.
  • [33] Ongun, M.Y., Arslan, D., Garrappa, R., 2013. Nonstandard Finite Difference Scemes for fractional order Brusselator system, Adv. Difference Equ., doi: 10.1186/1687-1847 (2013) 102.
  • [34] Podlubny, I.,1999. Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. Academic Press, San Diego-Boston-New York-London-Tokyo-Toronto, 368p.
  • [35] Tenreiro Machado J., Stefanescu, P., Tintareanu, O., Baleanu, D.,2013. Fractional calculus analysis of cosmic microwave backgrounds, Romanian Reports in Physics, Academic Press, San Diego-Boston-New York-London-Tokyo-Toronto, 65 (1)(2013) 316-323.
  • [36] Samko, S. G., Kilbas, A. A., Marichev, O. I.,1993. Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers.
  • [37] Ünlü, C., Jafari, H., Baleanu, D., 2013. Revised Variational Iteration Method for Solving Systems of Nonlinear Fractional-Order Differential Equations, Abstract and Applied Analysis, (2013),Article ID 461837, 7 p.
  • [38] Young, A.,1954. Approximate product-integration, Proceedings of the Royal Society of London Series A 224(1954) 552-561.
  • [39] Zhou, T.S., Li, C.P., 2005. Synchronization in fractional-order differential systems, Phys. D, 212 (2005)111-125.
  • [40] Wheatcraft, S., Meerschaert, M., 2008. Fractional Conservation of Mass, Advances in Water Resources 31 (2008) 1377-1381.
Year 2017, Volume: 21 Issue: 1, 165 - 172, 15.04.2017
https://doi.org/10.19113/sdufbed.24679

Abstract

References

  • [1] Arikoglu, A., Ozkoli I., 2007. Solution of fractional differential equation by using differential transforms method Chaos Solitions Fractals; 34(5) (2007),1473-1481.
  • [2] Arslan D., 2013. Numerical Solutions of Fractional Order Differential Equations Systems, Thesis, SDU Graduate School of Natural and Applied Sciene, Isparta, Turkey, 57p.
  • [3] Baleanu, D., Mohammadi, H., Rezapour, S., 2012. Positive solutions of an initial value problem for nonlinear fractional differential equations. Abstract and Applied Analalysis, Art. ID 837437, (2012),7p.
  • [4] Bueno-Orovio, A., Kay, D., Grau, V., Rodriguez, B., Burrage,K.,2013. Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarisation, Tech. Rep. OCCAM 13/35, Oxford Centre for Collaborative Applied Mathematics, Oxford 464 (UK),
  • [5] Cafagna, D., Grassi, G.,2012. Observer-based projective synchronization of fractional systems via a scalar signal: Application to hyperchaotic Rossler systems, Nonlinear Dynam., 68 (1-2) (2012) 117–128.
  • [6] Caponetto, R., Maione, G., Pisano, A., Rapaic, M. M. R., Usai, E., 2013. Analysis and shaping of the self-sustained oscillations in relay controlled fractional-order systems, Fractional Calculus and Applied Analysis 16 (1) (2013) 93-108.
  • [7] Deng, W.H., Li, W.H., 2005. Chaos synchronization of the fractional Lü System, Physica A, 353, (2005) 61-72.
  • [8] Diethelm, K., Freed, A. D.,1998. The FracPECE subroutine for the numerical solution of differantial equations of fractional order, in Forschung und Wissenschaftliches Rechmen, 1999, 57-71.
  • [9] Diethelm K., Ford, N.J., Freed, A.D., 2002. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics., 29(1-4) (2002) 3-22.
  • [10] Diethelm K., Ford, N.J., Freed, A.D., Luchko, Y.,2005. Algorithms for the fractional calculus: a selection of numerical methods. Computer methods in applied mechanics and engineering, 194 (6) (2005) 743-773.
  • [11] Lubich, C., 1986. Discretized fractional calculus. SIAM J. Math. Anal., 17(3) (1986) 704-719.
  • [12] Matignon, D., D’andrea-Novel, B.,1997, Observer-based controllers for fractional differential equations systems, in Conference on Decision and Control San Diego, CA, December, SIAM, IEEE-CSS, 4967-4972.
  • [13] Erturk, V.S., Momani, S., Odibat, Z., 2008. Application of generalized differential transform method to multi-order fractional diffrential equations. Commun. Nonlinear Sci. Numer. Simul. 13(8) (2008)1642-1654.
  • [14] V.S. Erturk, S. Momani, Z. Odibat. (2008). Application of generalized differential transform method to multi-order fractional diffrential equations. Commun. Nonlinear Sci. Numer. Simul. 13(8)(2008) 1642-1654.
  • [15] Galeone, L., Garrappa, R., 2006. On multisep methods for differential equations of fractional order, Mediterr. J. Math, 3(2006)565-580.
  • [16] Galeone, L., Garrappa, R., 2008. Fractional Adams-Moulton methods, Math. Comput. Simulation,79 (2008)1358-1367.
  • [17] Galeone, L., Garrappa, R., 2009. Explicit methods for fractional differential equations and their stability properties, J. Comput. Appl. Math., 228(2009)548-560.
  • [18] Garrappa, R., 2009. On some explicit Adams multistep methods for fractional differential equations J. Comput. Appl. Math., 229(2009)392-399.
  • [19] Garrappa R., 2010. On linear stability of predictor–corrector algorithms for fractional differential equations, Int. J. Comput. Math. 87(2010) 2281-2290.
  • [20] Garrappa R., Popolizio, M., 2011. On accurate product integration rules for linear fractional differential equations, J. Comput. Appl. Math., 235(2011)1085-1097.
  • [21] Kilbas,A.A., Srivastava,H.M., Trujillo,J. J.,2006. Theory and applications of fractional differential equations,North-Holland Mathematics Studies, 204(2006)135-209.
  • [22] C. Li, C. Ye., 2011. Numerical approaches to fractional calculus and fractional ordinary differential equation, J. Comput. Phys. 230(2011) 3352-3368.
  • [23] Luchko, Y., Gorenflo, R., 1999. An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math. Vietnam .24(2) (1999) 207-233.
  • [24] Lubich, C., 1986. Discretized fractional calculus, SIAM J. Math. Anal. 17 (1986) 704-719.
  • [25] Magin, R. L.,2010. Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl. 59 (5) (2010)1586-1593.
  • [26] Mickens, R.E., Smith, A., 1990. Finite-difference models of ordinary differential equations: influence of denominator functions. J. Franklin Inst.,327, (1990)143-149.
  • [27] Mickens, R.E.., 2007. Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition, Numer. Methods Partial Differential Equations 23(3) (2007) 672-691.
  • [28] Mickens, R.E., 1993. Nonstandard finite difference models of differential equations. River Edge, NJ: World Scientific Publishing Co. Inc..
  • [29] Miller, K.S., Ross, B.,1993. An Introduction to the Fractional Calculus and Fractional Differential Equations, John Willey & Sons, New York.
  • [30] Momani,S., Odibat, Z., 2007. Comparison between homotopy perturbation method and the variational iteration method for linear fractional partial differential equations, Computers and Math. Appl., 54(7)(2007)910-919.
  • [31] Momani,S., Odibat,Z., 2006. Analytical approach to linear fractional partial differential equations arising in fluid mechanics, Phys. Lett. A, 355 (2006) 271-279.
  • [32] Oldham, K.B., Spanier, J.,1974. The Fractional Calculus, Mathematics in Science and Engineering, Academic Press,New York.
  • [33] Ongun, M.Y., Arslan, D., Garrappa, R., 2013. Nonstandard Finite Difference Scemes for fractional order Brusselator system, Adv. Difference Equ., doi: 10.1186/1687-1847 (2013) 102.
  • [34] Podlubny, I.,1999. Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. Academic Press, San Diego-Boston-New York-London-Tokyo-Toronto, 368p.
  • [35] Tenreiro Machado J., Stefanescu, P., Tintareanu, O., Baleanu, D.,2013. Fractional calculus analysis of cosmic microwave backgrounds, Romanian Reports in Physics, Academic Press, San Diego-Boston-New York-London-Tokyo-Toronto, 65 (1)(2013) 316-323.
  • [36] Samko, S. G., Kilbas, A. A., Marichev, O. I.,1993. Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers.
  • [37] Ünlü, C., Jafari, H., Baleanu, D., 2013. Revised Variational Iteration Method for Solving Systems of Nonlinear Fractional-Order Differential Equations, Abstract and Applied Analysis, (2013),Article ID 461837, 7 p.
  • [38] Young, A.,1954. Approximate product-integration, Proceedings of the Royal Society of London Series A 224(1954) 552-561.
  • [39] Zhou, T.S., Li, C.P., 2005. Synchronization in fractional-order differential systems, Phys. D, 212 (2005)111-125.
  • [40] Wheatcraft, S., Meerschaert, M., 2008. Fractional Conservation of Mass, Advances in Water Resources 31 (2008) 1377-1381.
There are 40 citations in total.

Details

Journal Section Articles
Authors

Mevlüde Yakıt Ongun

Damla Arslan This is me

Javad Farzi This is me

Publication Date April 15, 2017
Published in Issue Year 2017 Volume: 21 Issue: 1

Cite

APA Yakıt Ongun, M., Arslan, D., & Farzi, J. (2017). Numerical Solutions of Fractional Order Autocatalytic Chemical Reaction Model. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 165-172. https://doi.org/10.19113/sdufbed.24679
AMA Yakıt Ongun M, Arslan D, Farzi J. Numerical Solutions of Fractional Order Autocatalytic Chemical Reaction Model. J. Nat. Appl. Sci. April 2017;21(1):165-172. doi:10.19113/sdufbed.24679
Chicago Yakıt Ongun, Mevlüde, Damla Arslan, and Javad Farzi. “Numerical Solutions of Fractional Order Autocatalytic Chemical Reaction Model”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21, no. 1 (April 2017): 165-72. https://doi.org/10.19113/sdufbed.24679.
EndNote Yakıt Ongun M, Arslan D, Farzi J (April 1, 2017) Numerical Solutions of Fractional Order Autocatalytic Chemical Reaction Model. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 1 165–172.
IEEE M. Yakıt Ongun, D. Arslan, and J. Farzi, “Numerical Solutions of Fractional Order Autocatalytic Chemical Reaction Model”, J. Nat. Appl. Sci., vol. 21, no. 1, pp. 165–172, 2017, doi: 10.19113/sdufbed.24679.
ISNAD Yakıt Ongun, Mevlüde et al. “Numerical Solutions of Fractional Order Autocatalytic Chemical Reaction Model”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21/1 (April 2017), 165-172. https://doi.org/10.19113/sdufbed.24679.
JAMA Yakıt Ongun M, Arslan D, Farzi J. Numerical Solutions of Fractional Order Autocatalytic Chemical Reaction Model. J. Nat. Appl. Sci. 2017;21:165–172.
MLA Yakıt Ongun, Mevlüde et al. “Numerical Solutions of Fractional Order Autocatalytic Chemical Reaction Model”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 21, no. 1, 2017, pp. 165-72, doi:10.19113/sdufbed.24679.
Vancouver Yakıt Ongun M, Arslan D, Farzi J. Numerical Solutions of Fractional Order Autocatalytic Chemical Reaction Model. J. Nat. Appl. Sci. 2017;21(1):165-72.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.