BibTex RIS Cite

Energy and Exergy Analyses of CO2/HFE7000 Cascade Cooling System

Year 2017, Volume: 21 Issue: 3, 854 - 860, 30.10.2017
https://doi.org/10.19113/sdufbed.58140

Abstract

In this study, a new refrigerant HFE7000, has been investigated thermodynamically in the cascade cooling system. Energy (COP) and exergy efficiency of cascade cooling system with CO2/HFE7000 refrigerants are performed. In this regard, the impacts of various parameters on the COP and exergy efficiency and exergy destruction rate of CCS are studied. Moreover, the CO2 refrigerant is used in the low-temperature circuit and HFE7000 is used in the high-temperature circuit. The COP and exergy efficiency of cascade cooling system are found as 2.313 and 0.5482, for cooling application. In the last section, comparison with R134a refrigerant is done, which is widely used in cascade cooling system.

References

  • [1] Annex 49, 2007. Energy Conservation in Buildings and Community Systems Low Exergy Systems for High Performance Buildings and Communities, homepage: http://www.annex49.com,
  • [2] Chakravarthy, V.S., Shah, R.K., Venkatarathnam, G., 2011. A review of refrigeration methods in the temperature range 4-300K. Journal of Thermal Science and Engineering Applications, 3(2011), 1-18.
  • [3] Yulong, S., Dongzhe, L., Dongfang, Y., Lei, Jin, Feng, C., Xiaolin W. 2017. Performance comparison between the combined R134a/CO2 heat pump and cascade R134a/CO2 heat pump for space heating, International journal of Refrigeration, 74,(2017), 592–605
  • [4] Sarkar, J., Bhattacharyya, S., Gopal, M.R. 2006. Simulation of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications. Int. J. Refrigeration, 29(2006), 735–743.
  • [5] Mosaffa, A.H., L. Farshi G. C.A. 2016. Infante Ferreira, M.A. Rosen, Exergoeconomic and environmental analyses of CO2/NH3 cascade refrigeration systems equipped with different types of flash tank intercoolers, Energy Conversion and Management 117 (2016) 442–453
  • [6] Lee, TS., Liu, CH., Chen, TW. 2006. Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO2/NH3 cascade refrigeration systems. Int J Refrig, 29(2006), 1100–8.
  • [7] Kilicarslan, A., Hosoz, M. 2010. Energy and irreversibility analysis of a cascade refrigeration system for various refrigerant couples. Energy Convers Manage, 51 (2010), 2947–54.
  • [8] Yılmaz, F., Selbas, R., Ozgur, A.E., Balta, M.T. 2016. Performance Analyses of CO2-N2O Cascade System for Cooling. Energy, Transportation and Global Warming, Green Energy and Technology, Elsevier, DOI 10.1007/978-3-319-30127-3_37.
  • [9] Sun, Z., Liang, Y., Liu, S., Ji, W., Zang, R., Liang, R., Guo, Z. 2016. Comparative analysis of thermodynamic performance of a cascade refrigeration system for refrigerant couples R41/R404A and R23/R404A, Applied Energy, 184 (2016), 19–25.
  • [10] Parekh, A,, Tailor, P. 2011. Thermodynamic analysis of R507A–R23 cascade refrigeration system. International Journal of Aerospace Engineering , 5 (2011), 1919–23.
  • [11] Lee, T., Liu, C., Chen, T. 2006. Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO2/NH3 cascade refrigeration systems. Int J Refrig, 29 (7)(2006), 1100–8.
  • [12] Chen, Y., Han, W., Jin, H. 2017. Proposal and analysis of a novel heat-driven absorption compression refrigeration system at low temperatures. Appl Energy, 185(2) (2017), 2106–2116.
  • [13] Getu, H., Bansal, P. 2008. Thermodynamic analysis of an R744-R717 cascade refrigeration system. Int J Refrig, 31(1) (2008), 45–54.
  • [14] Dupont, 2016. ttp://www2.dupont.com/Refrigerants/en_US/uses_apps/automotive_ac/SmartAutoAC/flammabilit y_table.html#.UOxh4XdZiNc (Acc. Date: 12.10. 2016)
  • [15] Electronics Materials Solution Division. 2017. http://multimedia.3m.com/mws/media/121372O/3m-novec-7000-engineered-fluid-tds.pdf (Acc. Date: 11.04. 2017)
  • [16] Moran, M., 1982 “Availability Analysis: A Guide to Efficient Energy Usage”, Englewood Cliffs, NJ: Prentice-Hall,
  • [17] Bejan, A., Tsatsaronis, G., Moran, M. 1996. “Thermal Design and Optimization”, New York: Wiley Inter-science.
  • [18] Kotas, T. 1985. The exergy method of thermal plant analysis, Krieger Publishing Company
Year 2017, Volume: 21 Issue: 3, 854 - 860, 30.10.2017
https://doi.org/10.19113/sdufbed.58140

Abstract

References

  • [1] Annex 49, 2007. Energy Conservation in Buildings and Community Systems Low Exergy Systems for High Performance Buildings and Communities, homepage: http://www.annex49.com,
  • [2] Chakravarthy, V.S., Shah, R.K., Venkatarathnam, G., 2011. A review of refrigeration methods in the temperature range 4-300K. Journal of Thermal Science and Engineering Applications, 3(2011), 1-18.
  • [3] Yulong, S., Dongzhe, L., Dongfang, Y., Lei, Jin, Feng, C., Xiaolin W. 2017. Performance comparison between the combined R134a/CO2 heat pump and cascade R134a/CO2 heat pump for space heating, International journal of Refrigeration, 74,(2017), 592–605
  • [4] Sarkar, J., Bhattacharyya, S., Gopal, M.R. 2006. Simulation of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications. Int. J. Refrigeration, 29(2006), 735–743.
  • [5] Mosaffa, A.H., L. Farshi G. C.A. 2016. Infante Ferreira, M.A. Rosen, Exergoeconomic and environmental analyses of CO2/NH3 cascade refrigeration systems equipped with different types of flash tank intercoolers, Energy Conversion and Management 117 (2016) 442–453
  • [6] Lee, TS., Liu, CH., Chen, TW. 2006. Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO2/NH3 cascade refrigeration systems. Int J Refrig, 29(2006), 1100–8.
  • [7] Kilicarslan, A., Hosoz, M. 2010. Energy and irreversibility analysis of a cascade refrigeration system for various refrigerant couples. Energy Convers Manage, 51 (2010), 2947–54.
  • [8] Yılmaz, F., Selbas, R., Ozgur, A.E., Balta, M.T. 2016. Performance Analyses of CO2-N2O Cascade System for Cooling. Energy, Transportation and Global Warming, Green Energy and Technology, Elsevier, DOI 10.1007/978-3-319-30127-3_37.
  • [9] Sun, Z., Liang, Y., Liu, S., Ji, W., Zang, R., Liang, R., Guo, Z. 2016. Comparative analysis of thermodynamic performance of a cascade refrigeration system for refrigerant couples R41/R404A and R23/R404A, Applied Energy, 184 (2016), 19–25.
  • [10] Parekh, A,, Tailor, P. 2011. Thermodynamic analysis of R507A–R23 cascade refrigeration system. International Journal of Aerospace Engineering , 5 (2011), 1919–23.
  • [11] Lee, T., Liu, C., Chen, T. 2006. Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO2/NH3 cascade refrigeration systems. Int J Refrig, 29 (7)(2006), 1100–8.
  • [12] Chen, Y., Han, W., Jin, H. 2017. Proposal and analysis of a novel heat-driven absorption compression refrigeration system at low temperatures. Appl Energy, 185(2) (2017), 2106–2116.
  • [13] Getu, H., Bansal, P. 2008. Thermodynamic analysis of an R744-R717 cascade refrigeration system. Int J Refrig, 31(1) (2008), 45–54.
  • [14] Dupont, 2016. ttp://www2.dupont.com/Refrigerants/en_US/uses_apps/automotive_ac/SmartAutoAC/flammabilit y_table.html#.UOxh4XdZiNc (Acc. Date: 12.10. 2016)
  • [15] Electronics Materials Solution Division. 2017. http://multimedia.3m.com/mws/media/121372O/3m-novec-7000-engineered-fluid-tds.pdf (Acc. Date: 11.04. 2017)
  • [16] Moran, M., 1982 “Availability Analysis: A Guide to Efficient Energy Usage”, Englewood Cliffs, NJ: Prentice-Hall,
  • [17] Bejan, A., Tsatsaronis, G., Moran, M. 1996. “Thermal Design and Optimization”, New York: Wiley Inter-science.
  • [18] Kotas, T. 1985. The exergy method of thermal plant analysis, Krieger Publishing Company
There are 18 citations in total.

Details

Journal Section Articles
Authors

Fatih Yılmaz

Reşat Selbaş

Publication Date October 30, 2017
Published in Issue Year 2017 Volume: 21 Issue: 3

Cite

APA Yılmaz, F., & Selbaş, R. (2017). Energy and Exergy Analyses of CO2/HFE7000 Cascade Cooling System. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(3), 854-860. https://doi.org/10.19113/sdufbed.58140
AMA Yılmaz F, Selbaş R. Energy and Exergy Analyses of CO2/HFE7000 Cascade Cooling System. J. Nat. Appl. Sci. December 2017;21(3):854-860. doi:10.19113/sdufbed.58140
Chicago Yılmaz, Fatih, and Reşat Selbaş. “Energy and Exergy Analyses of CO2/HFE7000 Cascade Cooling System”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21, no. 3 (December 2017): 854-60. https://doi.org/10.19113/sdufbed.58140.
EndNote Yılmaz F, Selbaş R (December 1, 2017) Energy and Exergy Analyses of CO2/HFE7000 Cascade Cooling System. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 3 854–860.
IEEE F. Yılmaz and R. Selbaş, “Energy and Exergy Analyses of CO2/HFE7000 Cascade Cooling System”, J. Nat. Appl. Sci., vol. 21, no. 3, pp. 854–860, 2017, doi: 10.19113/sdufbed.58140.
ISNAD Yılmaz, Fatih - Selbaş, Reşat. “Energy and Exergy Analyses of CO2/HFE7000 Cascade Cooling System”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21/3 (December 2017), 854-860. https://doi.org/10.19113/sdufbed.58140.
JAMA Yılmaz F, Selbaş R. Energy and Exergy Analyses of CO2/HFE7000 Cascade Cooling System. J. Nat. Appl. Sci. 2017;21:854–860.
MLA Yılmaz, Fatih and Reşat Selbaş. “Energy and Exergy Analyses of CO2/HFE7000 Cascade Cooling System”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 21, no. 3, 2017, pp. 854-60, doi:10.19113/sdufbed.58140.
Vancouver Yılmaz F, Selbaş R. Energy and Exergy Analyses of CO2/HFE7000 Cascade Cooling System. J. Nat. Appl. Sci. 2017;21(3):854-60.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.