BibTex RIS Cite

Sorgum Tohumlarında Ağır Metal Stresi Etkilerinin Hafifletilmesinde Bazı Bitki Büyüme Regülatörlerinin Rolü

Year 2017, Volume: 21 Issue: 3, 886 - 893, 13.03.2017
https://doi.org/10.19113/sdufbed.66361

Abstract

Bu araştırmada kurşun [Pb(NO3)2], çinko [Zn(NO3)2.4H2O] ve kadmiyum [Cd(NO3)2.4H2O] ortamlarındaki Sorghum bicolor L. tohumlarının çimlenmesi üzerindeki ağır metal etkilerinde gibberellik asit (GA3/G), kinetin (K) ve bu iki bitki büyüme regülatörünün (BBR) kombinasyonlarının (K+G) rolü incelenmiştir. Kurşun (Pb), çinko (Zn) ve kadmiyum (Cd) konsantrasyon artışına paralel olarak tohumların çimlenmesini engellemiştir. Çimlenme üzerinde en zararlı etkiyi Cd yapmış bunu sırası ile Pb ve Zn izlemiştir. BBR uygulamaları Pb ile Cd’nin çimlenmeyi engelleyici etkisini çoğunlukla hafifletemezken (yalnızca 3 mM Pb düzeyindeki G uygulaması ve 0.4, 0.5 ve 0.7 mM Cd düzeylerindeki G uygulaması başarılıdır) Zn’nun yol açtığı bu olumsuzlukları değişik derecede ve önemli ölçüde hafifletmişlerdir. Her üç ağır metal de çimlenme aşamasında radikula uzaması başta olmak üzere koleoptil uzamasını belirgin şekilde inhibe etmiştir. Bu ağır metallere karşı radikula uzaması koleoptil uzamasından daha duyarlı bulunmuştur. BBR uygulamaları bu ağır metallerin radikula uzaması üzerindeki baskısını hafifletmede başarılı olamamışlardır. Pb, Zn ve Cd’nin koleoptil uzaması üzerindeki olumsuz etkilerini hafifletmede K+G başta olmak üzere uygulanan tüm bitki büyüme regülatörleri (BBR) başarı sağlamışlardır. Çalışılan ağır metallerin taze ağırlık ve fidecik su içeriği yüzdesinde yaptıkları olumsuz etkiler K ve K+G başta olmak üzere BBR uygulamaları ile çoğunlukla hafifletilebilmiştir.

References

  • [1] Yıldız, N. 2003. Toprak Kirletici Ağır Metaller ve Toprak Bitki İlişkileri. I. Ulusal Çevre Sempozyumu. Atatürk Üniversitesi Çevre Sorunları Araştırma Merkezi Müdürlüğü, 18-20 Ekim 2002, Erzurum.
  • [2] Türkan, İ. ed. 2008. Bitki Fizyolojisi. Palme Yayıncılık, Ankara, 690 s.
  • [3] Yıldız, N. 2004. Toprak ve Bitki Ekosistemindeki Ağır Metaller. ZT-531. Yüksek Lisans Ders Notları. Erzurum.
  • [4] Haktanır, K., Arcak, S. 1998. Çevre Kirliliği. Ankara Üniversitesi Ziraat Fakültesi Toprak Bölümü, Ankara, 323s.
  • [5] Breckle, S.W. 1989. Growth Under Stres: Heavy Metal In: Plant Roots. The Hidden Half (Eds.), New York, 351-373.
  • [6] Kabata-Pendias, A., Pendias, H. 1984. Trace Elements in Soils and in Plants. CRC Pres, Inc., Boca Raton, Florida, 315s.
  • [7] Lamhamdi, M., Bakrim, A., Aarab, A., Lafont, R., Sayah, F. 2011. Lead Phytotoxicity and Wheat (Triticum aestivum L.) Seed Germination and Seedlings Growth. Comptes Rendus Biologies, 334(2), 118-126.
  • [8] Brown, MT., Wilkins, DA. 1986. The Effects of Zinc on Germination, Survival and Growth of Betula Seed. Environmental Pollution Series A, Ecological and Biological, 41 (1), 53-61.
  • [9] Khurana, N., Chatterjee, C. 2001. Influence of Vaariable Zinc on Yield, Oil Content, and Physiology of Sunflower. Communications in soil Science and Plant Analysis, 32(19-20), 3023-3030.
  • [10] John, R., Ahmad, P., Gadgil, K., Sharma, S., 2009. Heavy metal toxicity: Effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. International Journal of Plant Production, 3 (3), 65-76.
  • [11] Padmaja, K., Prasad, D.D.K., Prasad, A.R.K., 1990. Inhibition of chlorophyll synthesis in Phaseolus vulgaris seedlings by cadmium acetate. Photosynthetica, 24, 399-405.
  • [12] Thamayanthi, D., Sharavanan, P.S., Vijayaragavan M., 2011. Effect of cadmium on seed germination, growth and pigments content of Zinnia plant. Current Botany, 2(8): 08-13.
  • [13] Farooq, M.A., Ali, S., Hameed, A., Ishaque, W., Mahmood, K., Iqbal, Z., 2013. Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton. Ecotoxicology and Environmental Safety, 96, 242–249.
  • [14] Tiryaki, İ. 2005. Sorgum: Genetik Kökeni, Kullanımı, Yetiştirme Teknikleri ve Biyoteknolojik Gelişmeler. KSÜ Fen ve Mühendislik Dergisi, 8(1), 84-90.
  • [15] Kabar, K., Baltepe, S. 1987. Alleviation of Salinity Stress on Germination of Barley Seeds by Plant Growth Regulators. Doga TU J. Biol., 3, 108-117.
  • [16] Kaur, S., Grupta, A.K., Kaur, N. 1998. Gibberellin A3 Reverses the Effect of Salt Stres in Chickpea (Cicer arietinum) Seedlings by Enhancing Amylase Activity and Mobilization of Starch in Cotyledons. Plant Growth Regulation, 26, 85-90.
  • [17] Gulzar, S., Khan, M.A. 2002. Alleviation of Salinity-Induced Dormancy in Perennial Grasses. Biologia Plantarum, 45(4), 617-619.
  • [18] Gonai, T., Kawahara, S., Tougou, M., Satoh, S., Hashiba, T., Hirai, N., Kawaide, H., Kamiya, Y., Yoshioka, T. 2004. Abscisic Acid in the Thermoinhibition of Lettuce Seed Germination and Enhancement of its Catabolism by Gibberellin. Journal of Experimental Botany, 55(394), 111-118.
  • [19] Akman, Z. 2009. Comparison of High Temperature Tolerance in Maize, Rice and Sorghum Seeds by Plant Growth Regulators. Journal of Animal and Veterinary Advances, 8(2), 358-361.
  • [20] Pospíšilová, J., Synková, H., Rulcová, J. 2000. Cytokinins and Water Stress. Biologia Plantarum, 43(3), 321-328.
  • [21] Tuna, A.L., Kaya, C., Dikilitas, M., Higgs, D., 2008. The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental and Experimental Botany, 62 (1), 1–9.
  • [22] Khan, M.N, Siddiqui, M.H, Mohammad, F., Naeem, M., Khan, M.M.A., 2010. Calcium chloride and gibberellic acid protect Linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiol Plant, 32:121–132.
  • [23] Fargasova, A. 1994. Effect of Pb, Cd, Hg, As and Cr on Germination and Root Growth of Sinapis alba Seeds. Bulletin of Environmental Contamination and Toxicology, 52(3), 452-456.
  • [24] El –Ghamery, A.A., El-Kholy, M.A., El-Yousser, A. 2003. Evalution of Cytological Effects of Zn+2 in Relation to Germination and Root Growth of Nigella sativa L. and Triticum aestivum L.. Mutation Research, 537(1), 29-41.
  • [25] Rout, G.R., Das, P. 2003. Effect of Metal Toxicity on Plant Growth and Metabolism : I. Zinc. Agronoöie, 23(1), 3-11.
  • [26] Thakur, S., Singh, L., Wahid, Z, Siddiqui, M.F., Atnaw, S. M., Md Din, M.F., 2016. Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environmental Monitoring and Assessment, 188:206.
  • [27] Sharma, P., Dubey, R.S. 2005. Lead Toxicity in Plants. Brazillian Journal of Plant Physiology, 17(1), 35-52.
  • [28] Jarvis, SC., Jones, LHP., Hopper, MJ. 1976. Cadmium Uptake From Solution by Plants and its Transport from Roots to Shoots. Plant and Soil, 44(1), 179-191.
  • [29] Mukherji, S., Maitra, P. 1977. Growth and Metabolism of Germinating Rice (Oryza sativa L.) Seeds as Influenced by Toxic Concentrations of Lead. Zeitschrift für Pflanzenphysiologie, 81(1), 26-33.
  • [30] Muller, H.D., Oorta, F.V., Gélieb, B., Balabanea, M. 2000. Strategies of Heavy Metal Uptake by Three Plant Species Growing Near a Metal Smelter. Environmental Pollution, 109(2), 231–238.
  • [31] Poschenrieder, Ch., Gunse, B., Barcelo, J. 1989. Influence of Cadmium on Water Relations, Stomotal Resistance and Absisic Acid Cdontent in Expanding Bean Leaves. Plant Physiology, 90, 1365-1371.
  • [32] Khan, A. A. 1971. Cytokinins: Permissive Role in Seed Germination. Science, 171(3974), 853-859.
  • [33] Khan, A.A. 1975. Primary, Preventive and Permissive Role of Hormones in Plant Systems. Bot. Rev., 41, 391-420.
  • [34] Akazawa, T., Yamaguchi, J., Hayashi, M. 1990. Rice-Amylase and Gibberellin Action-A Personal View, In: Takahashi N., Phinney B.O. and MacMillan J. Eds, Gibberellins, 114-124.
  • [35] Bialecka, B., Kepczynski, J. 2003. Regulation of α-Amylase Activity in Amaranthus Caudatus Seeds by Methyl Jasmonate, Gibberellin A3, Benzyladenine and Ethylene. Plant Growth Regulation, 39, 51-56.
  • [36] Karssen, C.M., 1995. Hormonal regulation of seed development, dormancy, and germination studied by genetic control. In Seed Development and Germination, J. Kigel and G. Galili, eds (New York: Marcel Dekker), s. 333-350.
  • [37] Sharma AD, Thakur M, Rana M, Singh K (2004). Effect of Plant Growth Hormones and Abiotic Stresses on Germination, Growth and Phosphatase Activities in Sorghum bicolor (L.) Moench Seeds. Afr. J. Biotechnol., 3: 308-312.
  • [38] Colebrook, E.H., Thomas, S.G., Phillips, A.L., Hedden, P., 2014. The role of gibberellin signalling in plant responses to abiotic stres. Journal of Experimental Biology, 217, 67–75.
  • [39] Srivastava, B.I., Ware, G. 1965. The Effect of Kinetin on Nucleic Acids and Nucleases of Excised Barley Leaves. Plant Physiology, 40(1), 62–64.
  • [40] Lin, P.P. 1984. Polyamine Metabolsim and Relation to Response of the Aleurone Layers of Barley Seeds to Gibberellic Acid. Plant Physiol, 74, 975-983.
  • [41] Esashi, Y., Okazaki, M., Yanai, N., Hishinuma, K. 1978. Control of the germination of secondary dormant cocklebur seeds by various germination stimulants. Plant Cell Physiol. 19, 1497-1506.
  • [42] Guadinova A, Sussenbekova H, Vojtechnova M, Kaminek M, Eder J, Kohout L. 1995. Different effects of two brassinosteroids on growth, auxin and cytokinin concentrations in tobacco callus tissue. Plant Growth Regulation, 17, 121-126.
  • [43] Khamlichi, C. R., Huntley, R., Jacqmard, A., Murray, JAH. 1999. Cytokinin Activation of Arabidopsis Cell Division Through a D-Type Cyclin. Science, 283(5407), 1541-1544.
  • [44] Braun, J.W., Khan, A.A. 1976. Alleviation of Salinity and High Temperature Stress by Plant Growth Regulators Permeated into Lettuce Seeds via Acetone. Journal American Society for Horticultural Science, 101, 716-721.
  • [45] Steffens, G.L., Byun, J.K., Wang, S.Y. 1985. Controlling Plant Growth via the Gibberellin Biosynthesis System–I. Growth Parameter Alterations in Apple Seedlings. Physiologia Plantarum, 63(2), 163-168.
Year 2017, Volume: 21 Issue: 3, 886 - 893, 13.03.2017
https://doi.org/10.19113/sdufbed.66361

Abstract

References

  • [1] Yıldız, N. 2003. Toprak Kirletici Ağır Metaller ve Toprak Bitki İlişkileri. I. Ulusal Çevre Sempozyumu. Atatürk Üniversitesi Çevre Sorunları Araştırma Merkezi Müdürlüğü, 18-20 Ekim 2002, Erzurum.
  • [2] Türkan, İ. ed. 2008. Bitki Fizyolojisi. Palme Yayıncılık, Ankara, 690 s.
  • [3] Yıldız, N. 2004. Toprak ve Bitki Ekosistemindeki Ağır Metaller. ZT-531. Yüksek Lisans Ders Notları. Erzurum.
  • [4] Haktanır, K., Arcak, S. 1998. Çevre Kirliliği. Ankara Üniversitesi Ziraat Fakültesi Toprak Bölümü, Ankara, 323s.
  • [5] Breckle, S.W. 1989. Growth Under Stres: Heavy Metal In: Plant Roots. The Hidden Half (Eds.), New York, 351-373.
  • [6] Kabata-Pendias, A., Pendias, H. 1984. Trace Elements in Soils and in Plants. CRC Pres, Inc., Boca Raton, Florida, 315s.
  • [7] Lamhamdi, M., Bakrim, A., Aarab, A., Lafont, R., Sayah, F. 2011. Lead Phytotoxicity and Wheat (Triticum aestivum L.) Seed Germination and Seedlings Growth. Comptes Rendus Biologies, 334(2), 118-126.
  • [8] Brown, MT., Wilkins, DA. 1986. The Effects of Zinc on Germination, Survival and Growth of Betula Seed. Environmental Pollution Series A, Ecological and Biological, 41 (1), 53-61.
  • [9] Khurana, N., Chatterjee, C. 2001. Influence of Vaariable Zinc on Yield, Oil Content, and Physiology of Sunflower. Communications in soil Science and Plant Analysis, 32(19-20), 3023-3030.
  • [10] John, R., Ahmad, P., Gadgil, K., Sharma, S., 2009. Heavy metal toxicity: Effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. International Journal of Plant Production, 3 (3), 65-76.
  • [11] Padmaja, K., Prasad, D.D.K., Prasad, A.R.K., 1990. Inhibition of chlorophyll synthesis in Phaseolus vulgaris seedlings by cadmium acetate. Photosynthetica, 24, 399-405.
  • [12] Thamayanthi, D., Sharavanan, P.S., Vijayaragavan M., 2011. Effect of cadmium on seed germination, growth and pigments content of Zinnia plant. Current Botany, 2(8): 08-13.
  • [13] Farooq, M.A., Ali, S., Hameed, A., Ishaque, W., Mahmood, K., Iqbal, Z., 2013. Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton. Ecotoxicology and Environmental Safety, 96, 242–249.
  • [14] Tiryaki, İ. 2005. Sorgum: Genetik Kökeni, Kullanımı, Yetiştirme Teknikleri ve Biyoteknolojik Gelişmeler. KSÜ Fen ve Mühendislik Dergisi, 8(1), 84-90.
  • [15] Kabar, K., Baltepe, S. 1987. Alleviation of Salinity Stress on Germination of Barley Seeds by Plant Growth Regulators. Doga TU J. Biol., 3, 108-117.
  • [16] Kaur, S., Grupta, A.K., Kaur, N. 1998. Gibberellin A3 Reverses the Effect of Salt Stres in Chickpea (Cicer arietinum) Seedlings by Enhancing Amylase Activity and Mobilization of Starch in Cotyledons. Plant Growth Regulation, 26, 85-90.
  • [17] Gulzar, S., Khan, M.A. 2002. Alleviation of Salinity-Induced Dormancy in Perennial Grasses. Biologia Plantarum, 45(4), 617-619.
  • [18] Gonai, T., Kawahara, S., Tougou, M., Satoh, S., Hashiba, T., Hirai, N., Kawaide, H., Kamiya, Y., Yoshioka, T. 2004. Abscisic Acid in the Thermoinhibition of Lettuce Seed Germination and Enhancement of its Catabolism by Gibberellin. Journal of Experimental Botany, 55(394), 111-118.
  • [19] Akman, Z. 2009. Comparison of High Temperature Tolerance in Maize, Rice and Sorghum Seeds by Plant Growth Regulators. Journal of Animal and Veterinary Advances, 8(2), 358-361.
  • [20] Pospíšilová, J., Synková, H., Rulcová, J. 2000. Cytokinins and Water Stress. Biologia Plantarum, 43(3), 321-328.
  • [21] Tuna, A.L., Kaya, C., Dikilitas, M., Higgs, D., 2008. The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental and Experimental Botany, 62 (1), 1–9.
  • [22] Khan, M.N, Siddiqui, M.H, Mohammad, F., Naeem, M., Khan, M.M.A., 2010. Calcium chloride and gibberellic acid protect Linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiol Plant, 32:121–132.
  • [23] Fargasova, A. 1994. Effect of Pb, Cd, Hg, As and Cr on Germination and Root Growth of Sinapis alba Seeds. Bulletin of Environmental Contamination and Toxicology, 52(3), 452-456.
  • [24] El –Ghamery, A.A., El-Kholy, M.A., El-Yousser, A. 2003. Evalution of Cytological Effects of Zn+2 in Relation to Germination and Root Growth of Nigella sativa L. and Triticum aestivum L.. Mutation Research, 537(1), 29-41.
  • [25] Rout, G.R., Das, P. 2003. Effect of Metal Toxicity on Plant Growth and Metabolism : I. Zinc. Agronoöie, 23(1), 3-11.
  • [26] Thakur, S., Singh, L., Wahid, Z, Siddiqui, M.F., Atnaw, S. M., Md Din, M.F., 2016. Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environmental Monitoring and Assessment, 188:206.
  • [27] Sharma, P., Dubey, R.S. 2005. Lead Toxicity in Plants. Brazillian Journal of Plant Physiology, 17(1), 35-52.
  • [28] Jarvis, SC., Jones, LHP., Hopper, MJ. 1976. Cadmium Uptake From Solution by Plants and its Transport from Roots to Shoots. Plant and Soil, 44(1), 179-191.
  • [29] Mukherji, S., Maitra, P. 1977. Growth and Metabolism of Germinating Rice (Oryza sativa L.) Seeds as Influenced by Toxic Concentrations of Lead. Zeitschrift für Pflanzenphysiologie, 81(1), 26-33.
  • [30] Muller, H.D., Oorta, F.V., Gélieb, B., Balabanea, M. 2000. Strategies of Heavy Metal Uptake by Three Plant Species Growing Near a Metal Smelter. Environmental Pollution, 109(2), 231–238.
  • [31] Poschenrieder, Ch., Gunse, B., Barcelo, J. 1989. Influence of Cadmium on Water Relations, Stomotal Resistance and Absisic Acid Cdontent in Expanding Bean Leaves. Plant Physiology, 90, 1365-1371.
  • [32] Khan, A. A. 1971. Cytokinins: Permissive Role in Seed Germination. Science, 171(3974), 853-859.
  • [33] Khan, A.A. 1975. Primary, Preventive and Permissive Role of Hormones in Plant Systems. Bot. Rev., 41, 391-420.
  • [34] Akazawa, T., Yamaguchi, J., Hayashi, M. 1990. Rice-Amylase and Gibberellin Action-A Personal View, In: Takahashi N., Phinney B.O. and MacMillan J. Eds, Gibberellins, 114-124.
  • [35] Bialecka, B., Kepczynski, J. 2003. Regulation of α-Amylase Activity in Amaranthus Caudatus Seeds by Methyl Jasmonate, Gibberellin A3, Benzyladenine and Ethylene. Plant Growth Regulation, 39, 51-56.
  • [36] Karssen, C.M., 1995. Hormonal regulation of seed development, dormancy, and germination studied by genetic control. In Seed Development and Germination, J. Kigel and G. Galili, eds (New York: Marcel Dekker), s. 333-350.
  • [37] Sharma AD, Thakur M, Rana M, Singh K (2004). Effect of Plant Growth Hormones and Abiotic Stresses on Germination, Growth and Phosphatase Activities in Sorghum bicolor (L.) Moench Seeds. Afr. J. Biotechnol., 3: 308-312.
  • [38] Colebrook, E.H., Thomas, S.G., Phillips, A.L., Hedden, P., 2014. The role of gibberellin signalling in plant responses to abiotic stres. Journal of Experimental Biology, 217, 67–75.
  • [39] Srivastava, B.I., Ware, G. 1965. The Effect of Kinetin on Nucleic Acids and Nucleases of Excised Barley Leaves. Plant Physiology, 40(1), 62–64.
  • [40] Lin, P.P. 1984. Polyamine Metabolsim and Relation to Response of the Aleurone Layers of Barley Seeds to Gibberellic Acid. Plant Physiol, 74, 975-983.
  • [41] Esashi, Y., Okazaki, M., Yanai, N., Hishinuma, K. 1978. Control of the germination of secondary dormant cocklebur seeds by various germination stimulants. Plant Cell Physiol. 19, 1497-1506.
  • [42] Guadinova A, Sussenbekova H, Vojtechnova M, Kaminek M, Eder J, Kohout L. 1995. Different effects of two brassinosteroids on growth, auxin and cytokinin concentrations in tobacco callus tissue. Plant Growth Regulation, 17, 121-126.
  • [43] Khamlichi, C. R., Huntley, R., Jacqmard, A., Murray, JAH. 1999. Cytokinin Activation of Arabidopsis Cell Division Through a D-Type Cyclin. Science, 283(5407), 1541-1544.
  • [44] Braun, J.W., Khan, A.A. 1976. Alleviation of Salinity and High Temperature Stress by Plant Growth Regulators Permeated into Lettuce Seeds via Acetone. Journal American Society for Horticultural Science, 101, 716-721.
  • [45] Steffens, G.L., Byun, J.K., Wang, S.Y. 1985. Controlling Plant Growth via the Gibberellin Biosynthesis System–I. Growth Parameter Alterations in Apple Seedlings. Physiologia Plantarum, 63(2), 163-168.
There are 45 citations in total.

Details

Journal Section Articles
Authors

Damla Güvercin

Publication Date March 13, 2017
Published in Issue Year 2017 Volume: 21 Issue: 3

Cite

APA Güvercin, D. (2017). Sorgum Tohumlarında Ağır Metal Stresi Etkilerinin Hafifletilmesinde Bazı Bitki Büyüme Regülatörlerinin Rolü. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(3), 886-893. https://doi.org/10.19113/sdufbed.66361
AMA Güvercin D. Sorgum Tohumlarında Ağır Metal Stresi Etkilerinin Hafifletilmesinde Bazı Bitki Büyüme Regülatörlerinin Rolü. J. Nat. Appl. Sci. December 2017;21(3):886-893. doi:10.19113/sdufbed.66361
Chicago Güvercin, Damla. “Sorgum Tohumlarında Ağır Metal Stresi Etkilerinin Hafifletilmesinde Bazı Bitki Büyüme Regülatörlerinin Rolü”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21, no. 3 (December 2017): 886-93. https://doi.org/10.19113/sdufbed.66361.
EndNote Güvercin D (December 1, 2017) Sorgum Tohumlarında Ağır Metal Stresi Etkilerinin Hafifletilmesinde Bazı Bitki Büyüme Regülatörlerinin Rolü. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 3 886–893.
IEEE D. Güvercin, “Sorgum Tohumlarında Ağır Metal Stresi Etkilerinin Hafifletilmesinde Bazı Bitki Büyüme Regülatörlerinin Rolü”, J. Nat. Appl. Sci., vol. 21, no. 3, pp. 886–893, 2017, doi: 10.19113/sdufbed.66361.
ISNAD Güvercin, Damla. “Sorgum Tohumlarında Ağır Metal Stresi Etkilerinin Hafifletilmesinde Bazı Bitki Büyüme Regülatörlerinin Rolü”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21/3 (December 2017), 886-893. https://doi.org/10.19113/sdufbed.66361.
JAMA Güvercin D. Sorgum Tohumlarında Ağır Metal Stresi Etkilerinin Hafifletilmesinde Bazı Bitki Büyüme Regülatörlerinin Rolü. J. Nat. Appl. Sci. 2017;21:886–893.
MLA Güvercin, Damla. “Sorgum Tohumlarında Ağır Metal Stresi Etkilerinin Hafifletilmesinde Bazı Bitki Büyüme Regülatörlerinin Rolü”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 21, no. 3, 2017, pp. 886-93, doi:10.19113/sdufbed.66361.
Vancouver Güvercin D. Sorgum Tohumlarında Ağır Metal Stresi Etkilerinin Hafifletilmesinde Bazı Bitki Büyüme Regülatörlerinin Rolü. J. Nat. Appl. Sci. 2017;21(3):886-93.

Cited By

Sorgumun Çimlenme ve Fide Gelişimi Üzerine Bazı Ağır Metallerin Etkisi
Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
Esra Nermin ERTEKİN
https://doi.org/10.18016/ksutarimdoga.v23i54846.722592

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.