BibTex RIS Cite

Grafen Oksitin Ksantin Oksidaz Aktivitesi Üzerine <i>İn Vitro</i> Etkisinin İncelenmesi

Year 2017, Volume: 21 Issue: 2, 401 - 407, 15.08.2017

Abstract

Grafen karbon atomlarının altıgen bir kafes şeklinde düzenlenmesi ile oluşan iki boyutlu bir yapıdır ve biyolojik sistemlerin de dahil olduğu çeşitli uygulama alanlarına sahiptir. Bu çalışmada grafen oksitin (GO) pürin katabolizmasında rol alan ksantin oksidaz (KO) enzim aktivitesi üzerine in vitro etkisinin incelenmesi amaçlanmıştır. GO' nun KO aktivitesi üzerine etkisini incelemek amacıyla 0.50, 1.00, 5.00 ve 10.00 ppm olmak üzere 4 farklı derişimde GO çözeltisi KO tepkime ortamına ilave edilmiş ve 5 farklı substrat (hipoksantin) derişiminde aktivite değerleri spektrofotometrik olarak belirlenmiştir. Km ve Vmax değerleri saptanmıştır. KO' nun Vmax değeri 0.83 µM Ürat/mgProtein/dakika, Km değeri 138.95 µM olarak hesaplanmıştır. Tepkime ortamına 0.50, 1.00, 5.00, 10.00 ppm GO eklendiğinde KO enzimin sırasıyla %36.1, 72.3, 77.1 ve 84.3 oranında inhibe olduğu tespit edilmiştir. Sonuç olarak, GO derişimi arttıkça enzimin hem Km hem de Vmax değerlerinde dikkate değer bir azalma olduğu ve substrat derişimi artırsak da enzim inhibisyonun devam ettiği tespit edilmiştir. Bu da inhibisyon tipinin unkompetetif olduğunu göstermektedir.

References

  • [1] Chung, C., Kim, Y. K., Shin, D., Ryoo, S. R., Hong, B. H., & Min, D. H. 2013. Biomedical applications of graphene and graphene oxide. Accounts of chemical research, 46(10), 2211-2224.
  • [2] Grafen. https://tr.wikipedia.org/wiki/Grafen (Erişim Tarihi: 20. 04. 2016).
  • [3] Wei, X. L., & Ge, Z. Q. 2013. Effect of graphene oxide on conformation and activity of catalase. Carbon, 60, 401-409.
  • [4] Liu, Y., Li, Q.,Feng, Y. Y., Ji, G. S., Li, T. C., Tu, J., & Gu, X. D. 2014. Immobilisation of acid pectinase on graphene oxide nanosheets. Chemical Papers, 68(6), 732-738.
  • [5] Zhang, J., Zhang, F., Yang, H., Huang, X., Liu, H., Zhang, J., Guo, S. 2010. Graphene oxide as a matrix for enzyme immobilization. Langmuir, 26(9), 6083-6085.
  • [6] Battelli, M. G., Polito, L., Bolognesi, A. 2014. Xanthine oxidoreductase in atherosclerosis pathogenesis: Not only oxidative stress. Atherosclerosis, 237(2), 562-567.
  • [7] Massey, V., Brumby, P. E., Komai, H., & Palmer, G. 1969. Studies on milk xanthine oxidase Some spectral and kinetic properties. Journal of Biological Chemistry, 244(7), 1682-1691.
  • [8] Dikmen, N., Özgünen, T. ed.1996. Harper' ın Biyokimyası, Barış Kitabevi, İstanbul, 124s.
  • [9] Kenan, T.W., Patton, S. 1995. The structure of milk: implications for sampling and storage. ss 5-50s. Jensen, R.G., ed. 1995. Handbook of Milk Composition, New York, Academic Pres, U.S.A, 5-50s.
  • [10] Parks, D. A., Granger, D. N. 1986. Xanthine oxidase: biochemistry, distribution and physiology. Acta physiologica Scandinavica. Supplementum, 548, 87.
  • [11] Harrison, R. 200). Milk xanthine oxidase: Properties and physiological roles. International Dairy Journal, 16(6), 546-554.
  • [12] Roles of the enzyme xanthine oxidase and its products.http://flipper.diff.org/app/pathways/3895 (Erişim Tarihi: 22.04.2016).
  • [13] Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Tour, J. M. 2010. Improved synthesis of graphene oxide. ACS nano,4(8), 4806-4814.
  • [14] Sahoo, S. K., & Mallik, A. 2015. Simple, fast and cost-effective electrochemical synthesis of few layer graphene nanosheets. Nano, 10(02), 1550019.
  • [15] Liu, C., Hu, G., Gao, H. 2012. Preparation of few-layer and single-layer graphene by exfoliation of expandable graphite in supercritical N, N-dimethylformamide. The Journal of Supercritical Fluids, 63, 99-104.
  • [16] Lai, Q., Zhu, S., Luo, X., Zou, M., & Huang, S. 2012. Ultraviolet-visible spectroscopy of graphene oxides. AIP Advances, 2(3), 032146.
  • [17] Peng, S., Fan, X., Li, S., Zhang, J. 2013. Green synthesis and characterization of graphite oxide by orthogonal experiment. Journal of the Chilean Chemical Society, 58(4), 2213-2217.
  • [18] Thema, F. T., Moloto, M. J., Dikio, E. D., Nyangiwe, N. N., Kotsedi, L., Maaza, M., Khenfouch, M. 2012. Synthesis and characterization of graphene thin films by chemical reduction of exfoliated and intercalated graphite oxide.Journal of chemistry, 2013.
  • [19] Worthington-Enzyme Manual. 1972. Enzymes, Enzyme Reagents, related Biochemicals, Xanthineoxidase, Worthington Biochemical Corporation in Freehold, New Jersey, U.S.A. s. 216.
  • [20] Pei, S., & Cheng, H. M. 2012. The reduction of graphene oxide. Carbon,50(9), 3210-3228.
  • [21] Dang, T. T., Pham, V. H., Hur, S. H., Kim, E. J., Kong, B. S., & Chung, J. S. 2012. Superior dispersion of highly reduced graphene oxide in N, N-dimethylformamide. Journal of colloid and interface science, 376(1), 91-96.
  • [22] Feng, H., Wang, X., Wu, D. 2013. Fabrication of spirocyclic phosphazene epoxy-based nanocomposites with graphene via exfoliation of graphite platelets and thermal curing for enhancement of mechanical and conductive properties. Industrial & Engineering Chemistry Research, 52(30), 10160-10171.
  • [23] Kim, S. G., Park, O. K., Lee, J. H., Ku, B. C. 2013. Layer-by-layer assembled graphene oxide films and barrier properties of thermally reduced graphene oxide membranes. Carbon letters, 14(4), 247-250.
  • [24] Oh, J., Lee, J. H., Koo, J. C., Choi, H. R., Lee, Y., Kim, T., ... & Nam, J. D. 201). Graphene oxide porous paper from amine-functionalized poly (glycidyl methacrylate)/graphene oxide core-shell microspheres. Journal of Materials Chemistry, 20(41), 9200-9204.
  • [25] Stankovich, S., Piner, R. D., Nguyen, S. T., Ruoff, R. S. 2006. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon,44(15), 3342-3347.
  • [26] Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., Ruoff, R. S. 2010. Graphene and graphene oxide: synthesis, properties, and applications. Advanced materials, 22(35), 3906-3924.
  • [27] Compton, O. C., Nguyen, S.T. 2010. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon‐Based Materials. small, 6(6), 711-723.
  • [28] Rao, C. E. E., Sood, A. E., Subrahmanyam, K. E., Govindaraj, A. 2009. Graphene: the new two‐dimensional nanomaterial. Angewandte Chemie International Edition, 48(42), 7752-7777.
  • [29] Vovusha, H., Sanyal, S., Sanyal, B. 2013. Interaction of nucleobases and aromatic amino acids with graphene oxide and graphene flakes. The Journal of Physical Chemistry Letters, 4(21), 3710-3718.
  • [30] Şenel, M. C., Gürbüz, M., Koç, E. 2015. Gafen Takviyeli Alüminyum Matrisli Yeni Nesil Kompozitler. Engineer & the Machinery Magazine, (669).
  • [31] Chen, F., Liu, S., Shen, J., Wei, L., Liu, A., Chan-Park, M. B., Chen, Y. 2011. Ethanol-assisted graphene oxide-based thin film formation at pentane–water interface. Langmuir, 27(15), 9174-9181.
  • [32] Feng, L., Liu, Z. 2011. Graphene in biomedicine: opportunities and challenges. Nanomedicine, 6(2), 317-324.
  • [33] Kuila, T., Bose, S., Khanra, P., Mishra, A. K., Kim, N. H., Lee, J. H. 2011. Recent advances in graphene-based biosensors. Biosensors and Bioelectronics, 26(12), 4637-4648.
  • [34] Chi, F. L., Guo, Y. N., Liu, J., Liu, Y. L, Huo, Q.S. Size-Tunable and Functional Core−Shell Structured Silica Nanoparticles for Drug Release. 2010. J. Phys. Chem. 114, 2519−2523.
  • [35] Ferrari, M. 2005. Cancer nanotechnology: opportunities and challenges. Nature Reviews Cancer, 5(3), 161-171.
  • [36] Varghese, N., Mogera, U., Govindaraj, A., Das, A., Maiti, P. K., Sood, A. K., Rao, C. N. R. 2009. Binding of DNA nucleobases and nucleosides with graphene. ChemPhysChem, 10(1), 206-210.
  • [37] Gowtham, S., Scheicher, R. H., Ahuja, R., Pandey, R., Karna, S. P. 2007. Physisorption of nucleobases on graphene: Density-functional calculations. Physical Review B, 76(3), 033401.
  • [38] Cazorla, C. 2010. Ab initio study of the binding of collagen amino acids to graphene and A-doped (A= H, Ca) graphene. Thin Solid Films, 518(23), 6951-6961.
  • [39] Cazorla, C., Rojas-Cervellera, V., Rovira, C. 2012. Calcium-based functionalization of carbon nanostructures for peptide immobilization in aqueous media. Journal of Materials Chemistry, 22(37), 19684-19693.
  • [40] Wang, K., Ruan, J., Song, H., Zhang, J., Wo, Y., Guo, S., Cui, D. 2011. Biocompatibility of graphene oxide. Nanoscale Res Lett, 6(8), 1.
  • [41] Liao, K. H., Lin, Y. S., Macosko, C. W., Haynes, C. L. 2011. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS applied materials & interfaces, 3(7), 2607-2615.
  • [42] Hu W., Peng C., Luo W., Lv M., Li X., Li D., Fan C. 2010. Graphene-based antibacterial paper. ACS nano, 4(7), 4317-4323.
  • [43] Chang Y., Yang S.T., Liu J.H., Dong E., Wang Y., Cao A., Liu Y., Wang H. 2011. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicology letters, 200(3), 201-210.
  • [44] Fang J., Yin H., Liao L., Qin H., Ueda F, Uemura K., Eguchi K., Bhrate G., Maeda H. 2016. Water soluble PEG-conjugate of xanthine oxidase inhibitor, PEG–AHPP micelles, as a novel therapeutic for ROS related inflammatory bowel diseases. Journal of Controlled Release, 223, 188-196.
  • [45] Qiu Y., Wang Z., Owens A. C., Kulaots I., Chen Y., Kane A. B., Hurt R. H. 2014. Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale, 6(20), 11744-11755.
Year 2017, Volume: 21 Issue: 2, 401 - 407, 15.08.2017

Abstract

References

  • [1] Chung, C., Kim, Y. K., Shin, D., Ryoo, S. R., Hong, B. H., & Min, D. H. 2013. Biomedical applications of graphene and graphene oxide. Accounts of chemical research, 46(10), 2211-2224.
  • [2] Grafen. https://tr.wikipedia.org/wiki/Grafen (Erişim Tarihi: 20. 04. 2016).
  • [3] Wei, X. L., & Ge, Z. Q. 2013. Effect of graphene oxide on conformation and activity of catalase. Carbon, 60, 401-409.
  • [4] Liu, Y., Li, Q.,Feng, Y. Y., Ji, G. S., Li, T. C., Tu, J., & Gu, X. D. 2014. Immobilisation of acid pectinase on graphene oxide nanosheets. Chemical Papers, 68(6), 732-738.
  • [5] Zhang, J., Zhang, F., Yang, H., Huang, X., Liu, H., Zhang, J., Guo, S. 2010. Graphene oxide as a matrix for enzyme immobilization. Langmuir, 26(9), 6083-6085.
  • [6] Battelli, M. G., Polito, L., Bolognesi, A. 2014. Xanthine oxidoreductase in atherosclerosis pathogenesis: Not only oxidative stress. Atherosclerosis, 237(2), 562-567.
  • [7] Massey, V., Brumby, P. E., Komai, H., & Palmer, G. 1969. Studies on milk xanthine oxidase Some spectral and kinetic properties. Journal of Biological Chemistry, 244(7), 1682-1691.
  • [8] Dikmen, N., Özgünen, T. ed.1996. Harper' ın Biyokimyası, Barış Kitabevi, İstanbul, 124s.
  • [9] Kenan, T.W., Patton, S. 1995. The structure of milk: implications for sampling and storage. ss 5-50s. Jensen, R.G., ed. 1995. Handbook of Milk Composition, New York, Academic Pres, U.S.A, 5-50s.
  • [10] Parks, D. A., Granger, D. N. 1986. Xanthine oxidase: biochemistry, distribution and physiology. Acta physiologica Scandinavica. Supplementum, 548, 87.
  • [11] Harrison, R. 200). Milk xanthine oxidase: Properties and physiological roles. International Dairy Journal, 16(6), 546-554.
  • [12] Roles of the enzyme xanthine oxidase and its products.http://flipper.diff.org/app/pathways/3895 (Erişim Tarihi: 22.04.2016).
  • [13] Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Tour, J. M. 2010. Improved synthesis of graphene oxide. ACS nano,4(8), 4806-4814.
  • [14] Sahoo, S. K., & Mallik, A. 2015. Simple, fast and cost-effective electrochemical synthesis of few layer graphene nanosheets. Nano, 10(02), 1550019.
  • [15] Liu, C., Hu, G., Gao, H. 2012. Preparation of few-layer and single-layer graphene by exfoliation of expandable graphite in supercritical N, N-dimethylformamide. The Journal of Supercritical Fluids, 63, 99-104.
  • [16] Lai, Q., Zhu, S., Luo, X., Zou, M., & Huang, S. 2012. Ultraviolet-visible spectroscopy of graphene oxides. AIP Advances, 2(3), 032146.
  • [17] Peng, S., Fan, X., Li, S., Zhang, J. 2013. Green synthesis and characterization of graphite oxide by orthogonal experiment. Journal of the Chilean Chemical Society, 58(4), 2213-2217.
  • [18] Thema, F. T., Moloto, M. J., Dikio, E. D., Nyangiwe, N. N., Kotsedi, L., Maaza, M., Khenfouch, M. 2012. Synthesis and characterization of graphene thin films by chemical reduction of exfoliated and intercalated graphite oxide.Journal of chemistry, 2013.
  • [19] Worthington-Enzyme Manual. 1972. Enzymes, Enzyme Reagents, related Biochemicals, Xanthineoxidase, Worthington Biochemical Corporation in Freehold, New Jersey, U.S.A. s. 216.
  • [20] Pei, S., & Cheng, H. M. 2012. The reduction of graphene oxide. Carbon,50(9), 3210-3228.
  • [21] Dang, T. T., Pham, V. H., Hur, S. H., Kim, E. J., Kong, B. S., & Chung, J. S. 2012. Superior dispersion of highly reduced graphene oxide in N, N-dimethylformamide. Journal of colloid and interface science, 376(1), 91-96.
  • [22] Feng, H., Wang, X., Wu, D. 2013. Fabrication of spirocyclic phosphazene epoxy-based nanocomposites with graphene via exfoliation of graphite platelets and thermal curing for enhancement of mechanical and conductive properties. Industrial & Engineering Chemistry Research, 52(30), 10160-10171.
  • [23] Kim, S. G., Park, O. K., Lee, J. H., Ku, B. C. 2013. Layer-by-layer assembled graphene oxide films and barrier properties of thermally reduced graphene oxide membranes. Carbon letters, 14(4), 247-250.
  • [24] Oh, J., Lee, J. H., Koo, J. C., Choi, H. R., Lee, Y., Kim, T., ... & Nam, J. D. 201). Graphene oxide porous paper from amine-functionalized poly (glycidyl methacrylate)/graphene oxide core-shell microspheres. Journal of Materials Chemistry, 20(41), 9200-9204.
  • [25] Stankovich, S., Piner, R. D., Nguyen, S. T., Ruoff, R. S. 2006. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon,44(15), 3342-3347.
  • [26] Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., Ruoff, R. S. 2010. Graphene and graphene oxide: synthesis, properties, and applications. Advanced materials, 22(35), 3906-3924.
  • [27] Compton, O. C., Nguyen, S.T. 2010. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon‐Based Materials. small, 6(6), 711-723.
  • [28] Rao, C. E. E., Sood, A. E., Subrahmanyam, K. E., Govindaraj, A. 2009. Graphene: the new two‐dimensional nanomaterial. Angewandte Chemie International Edition, 48(42), 7752-7777.
  • [29] Vovusha, H., Sanyal, S., Sanyal, B. 2013. Interaction of nucleobases and aromatic amino acids with graphene oxide and graphene flakes. The Journal of Physical Chemistry Letters, 4(21), 3710-3718.
  • [30] Şenel, M. C., Gürbüz, M., Koç, E. 2015. Gafen Takviyeli Alüminyum Matrisli Yeni Nesil Kompozitler. Engineer & the Machinery Magazine, (669).
  • [31] Chen, F., Liu, S., Shen, J., Wei, L., Liu, A., Chan-Park, M. B., Chen, Y. 2011. Ethanol-assisted graphene oxide-based thin film formation at pentane–water interface. Langmuir, 27(15), 9174-9181.
  • [32] Feng, L., Liu, Z. 2011. Graphene in biomedicine: opportunities and challenges. Nanomedicine, 6(2), 317-324.
  • [33] Kuila, T., Bose, S., Khanra, P., Mishra, A. K., Kim, N. H., Lee, J. H. 2011. Recent advances in graphene-based biosensors. Biosensors and Bioelectronics, 26(12), 4637-4648.
  • [34] Chi, F. L., Guo, Y. N., Liu, J., Liu, Y. L, Huo, Q.S. Size-Tunable and Functional Core−Shell Structured Silica Nanoparticles for Drug Release. 2010. J. Phys. Chem. 114, 2519−2523.
  • [35] Ferrari, M. 2005. Cancer nanotechnology: opportunities and challenges. Nature Reviews Cancer, 5(3), 161-171.
  • [36] Varghese, N., Mogera, U., Govindaraj, A., Das, A., Maiti, P. K., Sood, A. K., Rao, C. N. R. 2009. Binding of DNA nucleobases and nucleosides with graphene. ChemPhysChem, 10(1), 206-210.
  • [37] Gowtham, S., Scheicher, R. H., Ahuja, R., Pandey, R., Karna, S. P. 2007. Physisorption of nucleobases on graphene: Density-functional calculations. Physical Review B, 76(3), 033401.
  • [38] Cazorla, C. 2010. Ab initio study of the binding of collagen amino acids to graphene and A-doped (A= H, Ca) graphene. Thin Solid Films, 518(23), 6951-6961.
  • [39] Cazorla, C., Rojas-Cervellera, V., Rovira, C. 2012. Calcium-based functionalization of carbon nanostructures for peptide immobilization in aqueous media. Journal of Materials Chemistry, 22(37), 19684-19693.
  • [40] Wang, K., Ruan, J., Song, H., Zhang, J., Wo, Y., Guo, S., Cui, D. 2011. Biocompatibility of graphene oxide. Nanoscale Res Lett, 6(8), 1.
  • [41] Liao, K. H., Lin, Y. S., Macosko, C. W., Haynes, C. L. 2011. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS applied materials & interfaces, 3(7), 2607-2615.
  • [42] Hu W., Peng C., Luo W., Lv M., Li X., Li D., Fan C. 2010. Graphene-based antibacterial paper. ACS nano, 4(7), 4317-4323.
  • [43] Chang Y., Yang S.T., Liu J.H., Dong E., Wang Y., Cao A., Liu Y., Wang H. 2011. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicology letters, 200(3), 201-210.
  • [44] Fang J., Yin H., Liao L., Qin H., Ueda F, Uemura K., Eguchi K., Bhrate G., Maeda H. 2016. Water soluble PEG-conjugate of xanthine oxidase inhibitor, PEG–AHPP micelles, as a novel therapeutic for ROS related inflammatory bowel diseases. Journal of Controlled Release, 223, 188-196.
  • [45] Qiu Y., Wang Z., Owens A. C., Kulaots I., Chen Y., Kane A. B., Hurt R. H. 2014. Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale, 6(20), 11744-11755.
There are 45 citations in total.

Details

Journal Section Articles
Authors

İsmail Sari

Sevtap Bakır

Veysel Kenan Çelik This is me

Serpil Erşan This is me

Duygu Anaklı This is me

Publication Date August 15, 2017
Published in Issue Year 2017 Volume: 21 Issue: 2

Cite

APA Sari, İ., Bakır, S., Çelik, V. K., Erşan, S., et al. (2017). Grafen Oksitin Ksantin Oksidaz Aktivitesi Üzerine İn Vitro Etkisinin İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(2), 401-407. https://doi.org/10.19113/sdufbed.04789
AMA Sari İ, Bakır S, Çelik VK, Erşan S, Anaklı D. Grafen Oksitin Ksantin Oksidaz Aktivitesi Üzerine İn Vitro Etkisinin İncelenmesi. J. Nat. Appl. Sci. August 2017;21(2):401-407. doi:10.19113/sdufbed.04789
Chicago Sari, İsmail, Sevtap Bakır, Veysel Kenan Çelik, Serpil Erşan, and Duygu Anaklı. “Grafen Oksitin Ksantin Oksidaz Aktivitesi Üzerine İn Vitro Etkisinin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21, no. 2 (August 2017): 401-7. https://doi.org/10.19113/sdufbed.04789.
EndNote Sari İ, Bakır S, Çelik VK, Erşan S, Anaklı D (August 1, 2017) Grafen Oksitin Ksantin Oksidaz Aktivitesi Üzerine İn Vitro Etkisinin İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 2 401–407.
IEEE İ. Sari, S. Bakır, V. K. Çelik, S. Erşan, and D. Anaklı, “Grafen Oksitin Ksantin Oksidaz Aktivitesi Üzerine İn Vitro Etkisinin İncelenmesi”, J. Nat. Appl. Sci., vol. 21, no. 2, pp. 401–407, 2017, doi: 10.19113/sdufbed.04789.
ISNAD Sari, İsmail et al. “Grafen Oksitin Ksantin Oksidaz Aktivitesi Üzerine İn Vitro Etkisinin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21/2 (August 2017), 401-407. https://doi.org/10.19113/sdufbed.04789.
JAMA Sari İ, Bakır S, Çelik VK, Erşan S, Anaklı D. Grafen Oksitin Ksantin Oksidaz Aktivitesi Üzerine İn Vitro Etkisinin İncelenmesi. J. Nat. Appl. Sci. 2017;21:401–407.
MLA Sari, İsmail et al. “Grafen Oksitin Ksantin Oksidaz Aktivitesi Üzerine İn Vitro Etkisinin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 21, no. 2, 2017, pp. 401-7, doi:10.19113/sdufbed.04789.
Vancouver Sari İ, Bakır S, Çelik VK, Erşan S, Anaklı D. Grafen Oksitin Ksantin Oksidaz Aktivitesi Üzerine İn Vitro Etkisinin İncelenmesi. J. Nat. Appl. Sci. 2017;21(2):401-7.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.