BibTex RIS Cite

Neighbor Rupture Degree of Some Middle Graphs

Year 2018, Volume: 22 Issue: 1, 75 - 80, 16.04.2018
https://doi.org/10.19113/sdufbed.09657

Abstract

Networks have an important place in our daily lives. Internet networks, electricity networks, water networks, transportation networks, social networks and biological networks are some of the networks we run into every aspects of our lives. A network consists of centers connected by links. A network is represented when centers and connections modelled by vertices and edges, respectively. In consequence of the failure of some centers or connection lines, measurement of the resistance of the network until the communication interrupted is called vulnerability of the network. In this study, neighbor rupture degree which is a parameter that explores the vulnerability values of the resulting graphs due to the failure of some centers of a communication network and its neighboring centers becoming nonfunctional were applied to some middle graphs and neighbor rupture degree of the $M(C_{n}),$ $M(P_{n}),$ $M(K_{1,n}),$ $M(W_{n}),$ $M(P_{n}\times K_{2})$ and $M(C_{n}\times K_{2})$ have been found.

References

  • [1] Bondy, J.A., Murty, U.S.R. 1976. Graph theory with application. Elsevier Science Ltd/North-Holland. 264s
  • [2] Chavatal, V. 1973. Tough graphs and Hamiltonian circuits. Discrete Math, 5(3), 215-228.
  • [3] Entringer, R., Swart H. 1987. Vulnerability in Graphs- A Comparative Survey. J. Combin. Math. Combin. Comput, 1, 12-22.
  • [4] Cozzens, M., Moazzami, D., Stueckle, S. 1995. The Tenacity of a graph. Graph theory, combinatorics and algorithms, 1, 1-2.
  • [5] Jung, H. A. 1978. On a class of posets and the corresponding comparability graphs. J. Combinatorial Theory Series B, 24(2), 125-133.
  • [6] Li, Y., Zhang, S., Li, X. 2005. Rupture degree of graphs. International Journal of Computer Mathematics, 82(7), 793-803.
  • [7] Bacak-Turan, G., Kirlangic, A. 2011. Neighbor Rupture Degree and The Relations Between Other Parameters. Ars Combinatoria, 102, 333-352.
  • [8] Gunther, G. 1985. Neighbor connectivity in regular graphs. Discrete Applied Mathematics, 11(3), 233-243.
  • [9] Cozzens, M. B., Wu, S.S.Y. 1996. Vertex-neighbor Integrity of trees. Ars Combinatoria, 43, 169-180.
  • [10] Kirlangic, A. 2004. Graph Operations and Neighbor Integrity. Mathematica Bohemica, 129(3), 245-254.
  • [11] Wei, Z.T. 2003. On the reliability parameters of networks. Northwestern Polytechnical University, MSc. Thesis, 40s.
  • [12] Kurkcu, O.K., Aksan, H. 2016. Neighbor Toughness of graphs. Bulletin of International Mathematical Virtual Institue, 6(2), 135-141.
  • [13] Aslan, E. 2015. Neighbor Isolated Tenacity of Graphs. RAIRO-Theor. Inf.Appl. 49(4), 269-284.
  • [14] Nihei, M.2001. On the toughness of the middle graph of a graph. Ars Combinatoria, 49, 55-58.
  • [15] Mamut, A., Vulmar, E.2007. A Note on the Integrity of Middle Graphs. Discrete Geometry, Combinatorics and Graph Theory, Lecture Notes in Computer Science, 4381, 130-134.
  • [16] Odabas, Z., Aytac, A. 2012. Rupture Degree and Middle Graphs. Comptess rendus de I’Acade’mie bulgare des Sciences, 65(3), 315-322.
  • [17] Aytac, A., Turaci, T., Odabas, Z. 2013. On the bondage number of middle graphs. Mathematical Notes, 93(5), 795-801.
  • [18] Aytac, A. 2005. On the edge-tenacity of the middle graph of a graph. International Journal of Computer Mathematics, 82(5), 551-558.
Year 2018, Volume: 22 Issue: 1, 75 - 80, 16.04.2018
https://doi.org/10.19113/sdufbed.09657

Abstract

References

  • [1] Bondy, J.A., Murty, U.S.R. 1976. Graph theory with application. Elsevier Science Ltd/North-Holland. 264s
  • [2] Chavatal, V. 1973. Tough graphs and Hamiltonian circuits. Discrete Math, 5(3), 215-228.
  • [3] Entringer, R., Swart H. 1987. Vulnerability in Graphs- A Comparative Survey. J. Combin. Math. Combin. Comput, 1, 12-22.
  • [4] Cozzens, M., Moazzami, D., Stueckle, S. 1995. The Tenacity of a graph. Graph theory, combinatorics and algorithms, 1, 1-2.
  • [5] Jung, H. A. 1978. On a class of posets and the corresponding comparability graphs. J. Combinatorial Theory Series B, 24(2), 125-133.
  • [6] Li, Y., Zhang, S., Li, X. 2005. Rupture degree of graphs. International Journal of Computer Mathematics, 82(7), 793-803.
  • [7] Bacak-Turan, G., Kirlangic, A. 2011. Neighbor Rupture Degree and The Relations Between Other Parameters. Ars Combinatoria, 102, 333-352.
  • [8] Gunther, G. 1985. Neighbor connectivity in regular graphs. Discrete Applied Mathematics, 11(3), 233-243.
  • [9] Cozzens, M. B., Wu, S.S.Y. 1996. Vertex-neighbor Integrity of trees. Ars Combinatoria, 43, 169-180.
  • [10] Kirlangic, A. 2004. Graph Operations and Neighbor Integrity. Mathematica Bohemica, 129(3), 245-254.
  • [11] Wei, Z.T. 2003. On the reliability parameters of networks. Northwestern Polytechnical University, MSc. Thesis, 40s.
  • [12] Kurkcu, O.K., Aksan, H. 2016. Neighbor Toughness of graphs. Bulletin of International Mathematical Virtual Institue, 6(2), 135-141.
  • [13] Aslan, E. 2015. Neighbor Isolated Tenacity of Graphs. RAIRO-Theor. Inf.Appl. 49(4), 269-284.
  • [14] Nihei, M.2001. On the toughness of the middle graph of a graph. Ars Combinatoria, 49, 55-58.
  • [15] Mamut, A., Vulmar, E.2007. A Note on the Integrity of Middle Graphs. Discrete Geometry, Combinatorics and Graph Theory, Lecture Notes in Computer Science, 4381, 130-134.
  • [16] Odabas, Z., Aytac, A. 2012. Rupture Degree and Middle Graphs. Comptess rendus de I’Acade’mie bulgare des Sciences, 65(3), 315-322.
  • [17] Aytac, A., Turaci, T., Odabas, Z. 2013. On the bondage number of middle graphs. Mathematical Notes, 93(5), 795-801.
  • [18] Aytac, A. 2005. On the edge-tenacity of the middle graph of a graph. International Journal of Computer Mathematics, 82(5), 551-558.
There are 18 citations in total.

Details

Journal Section Articles
Authors

Gökşen Bacak-turan

Meltem Ülkü Şenoğlu This is me

Ferhan Nihan Altundağ This is me

Publication Date April 16, 2018
Published in Issue Year 2018 Volume: 22 Issue: 1

Cite

APA Bacak-turan, G., Ülkü Şenoğlu, M., & Altundağ, F. N. (2018). Neighbor Rupture Degree of Some Middle Graphs. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(1), 75-80. https://doi.org/10.19113/sdufbed.09657
AMA Bacak-turan G, Ülkü Şenoğlu M, Altundağ FN. Neighbor Rupture Degree of Some Middle Graphs. J. Nat. Appl. Sci. April 2018;22(1):75-80. doi:10.19113/sdufbed.09657
Chicago Bacak-turan, Gökşen, Meltem Ülkü Şenoğlu, and Ferhan Nihan Altundağ. “Neighbor Rupture Degree of Some Middle Graphs”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no. 1 (April 2018): 75-80. https://doi.org/10.19113/sdufbed.09657.
EndNote Bacak-turan G, Ülkü Şenoğlu M, Altundağ FN (April 1, 2018) Neighbor Rupture Degree of Some Middle Graphs. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 1 75–80.
IEEE G. Bacak-turan, M. Ülkü Şenoğlu, and F. N. Altundağ, “Neighbor Rupture Degree of Some Middle Graphs”, J. Nat. Appl. Sci., vol. 22, no. 1, pp. 75–80, 2018, doi: 10.19113/sdufbed.09657.
ISNAD Bacak-turan, Gökşen et al. “Neighbor Rupture Degree of Some Middle Graphs”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/1 (April 2018), 75-80. https://doi.org/10.19113/sdufbed.09657.
JAMA Bacak-turan G, Ülkü Şenoğlu M, Altundağ FN. Neighbor Rupture Degree of Some Middle Graphs. J. Nat. Appl. Sci. 2018;22:75–80.
MLA Bacak-turan, Gökşen et al. “Neighbor Rupture Degree of Some Middle Graphs”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, no. 1, 2018, pp. 75-80, doi:10.19113/sdufbed.09657.
Vancouver Bacak-turan G, Ülkü Şenoğlu M, Altundağ FN. Neighbor Rupture Degree of Some Middle Graphs. J. Nat. Appl. Sci. 2018;22(1):75-80.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.