BibTex RIS Cite

ECG Data Compression Using ε-insensitive Quadratic Loss Function

Year 2018, Volume: 22 Issue: 2, 380 - 387, 15.08.2018
https://doi.org/10.19113/sdufbed.82260

Abstract

ElectroCardioGram (ECG) is a graphical representation of the electrical activity that occurred during the heartbeat. It plays a significant role in the diagnosis and analysis of heart diseases. ECG signals must be recorded continuously for the effective detection and diagnosis of heart diseases. However, such records as it produces large amounts of data at a level that makes it difficult storage and transmission can also be impaired due to the ambient noise. Thanks to the reasons mentioned above, an efficient ECG data compression algorithm is required even in a noisy environment. This study proposes ε-insensitive quadratic loss based Support Vector Regression (ε-quadratic SVR) technique for the compression of ECG signals. There is a well-known relationship between loss functions and noise distributions. The proposed ε-insensitive quadratic loss function provides the optimal solution against Gaussian noise. Computer simulation results show that the proposed loss function is an attractive candidate for ECG data compression in the presence of Gaussian noise.

References

  • [1] Wei, J. J., Chang, C. J., Chou, N. K., Jan, G. J. 2001. ECG data compression using truncated singular value decomposition. IEEE Transactions on Information Technology in Biomedicine, 5(2001), 290-299.
  • [2] Jalaleddine, S. M., Hutchens, C. G., Strattan, R. D., Coberly, W. A. 1990. ECG data compression techniques-a unified approach. IEEE transactions on Biomedical Engineering, 37(1990), 329-343.
  • [3] Manikandan, M. S., Dandapat, S. 2014. Wavelet-based electrocardiogram signal compression methods and their performances: a prospective review. Biomedical Signal Processing and Control, 14(2014), 73-107.
  • [4] Singh, B., Kaur, A., Singh, J. 2015. A review of ecg data compression techniques. International journal of computer applications, 116(2015), 39-44.
  • [5] Olmos, S., MillAn, M., Garcia, J., Laguna, P. 1996. ECG data compression with the Karhunen-Loeve transform. In Computers in Cardiology, Indianapolis, 8-11 September, USA, 253-256.
  • [6] Reddy, B. S., Murthy, I. S. N. 1986. ECG data compression using Fourier descriptors. IEEE Transactions on Biomedical Engineering, 4(1986), 428-434.
  • [7] Benzid, R., Messaoudi, A., Boussaad, A. 2008. Constrained ECG compression algorithm using the block-based discrete cosine transform. Digital Signal Processing, 18(2008), 56-64.
  • [8] Shinde, A. A., Kanjalkar, P. 2011. The comparison of different transform based methods for ECG data compression, Uluslararası konferans, ICSCCN-IEEE, 21-22 June, Thuckafay, India, 332-335.
  • [9] Addison, P. S. 2005. Wavelet transforms and the ECG: a review. Physiological measurement, 26(2005), R155.
  • [10] Karal, O. 2018. Destek Vektör Regresyon ile EKG Verilerinin Sıkıştırılması, Journal of the Faculty of Engineering and Architecture of Gazi University (In press).
  • [11] Karal, O. 2017. Maximum likelihood optimal and robust Support Vector Regression with lncosh loss function. Neural Networks, 94(2017), 1-12.
  • [12] Cortes, C., Vapnik, V. 1995. Support-vector networks, Mach. Learn., 20(3), 273-297, 1995.
  • [13] Smola, A. J., Schölkopf, B. 2004. A tutorial on support vector regression. Statistics and computing, 14(2004), 199-222.
  • [14] Mahmoodian, H., Ebrahimian, L. 2016. Using support vector regression in gene selection and fuzzy rule generation for relapse time prediction of breast cancer. Biocybernetics and Biomedical Engineering, 36(2016), 466-472.
  • [15] Valizadeh, M., Sohrabi, M. R. 2018. The application of artificial neural networks and support vector regression for simultaneous spectrophotometric determination of commercial eye drop contents. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 193(2018), 297-304.
  • [16] Huber, M. B., Lancianese, S. L., Nagarajan, M. B., Ikpot, I. Z., Lerner, A. L., Wismuller, A. 2011. Prediction of biomechanical properties of trabecular bone in MR images with geometric features and support vector regression. IEEE Transactions on Biomedical Engineering, 58(2011), 1820-1826.
  • [17] Guermoui, M., Mekhalfi, M. L., Ferroudji, K. 2013. Heart sounds analysis using wavelets responses and support vector machines. In Systems, Signal Processing and their Applications (WoSSPA), IEEE, May 2013, 8th International Workshop on, 233-238.
  • [18] Hu, Q., Zhang, S., Yu, M., Xie, Z. 2016. Short-term wind speed or power forecasting with heteroscedastic support vector regression. IEEE Trans. Sustainable Energy, 7(2016), 241-249.
  • [19] Khosravi, A., Koury, R. N. N., Machado, L., Pabon, J. J. G. 2018. Prediction of wind speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference system. Sustainable Energy Technologies and Assessments, 25(2018), 146-160.
  • [20] Guermoui, M., Rabehi, A., Gairaa, K., Benkaciali, S. 2018. Support vector regression methodology for estimating global solar radiation in Algeria. The European Physical Journal Plus, 133(2018), 22.
  • [21] Das, U. K., Tey, K. S., Seyedmahmoudian, M., Mekhilef, S., Idris, M. Y. I., Van Deventer, W., Stojcevski, A. 2018. Forecasting of photovoltaic power generation and model optimization: A review. Renewable and Sustainable Energy Reviews, 81(2018), 912-928.
  • [22] Yaslan, Y., Bican, B. 2017. Empirical mode decomposition based denoising method with support vector regression for time series prediction: a case study for electricity load forecasting. Measurement, 103(2017), 52-61.
  • [23] Nava, N., Matteo, T. D., Aste, T. 2018. Financial Time Series Forecasting Using Empirical Mode Decomposition and Support Vector Regression. Risks, 6(2018), 7.
  • [24] Massana, J., Pous, C., Burgas, L., Melendez, J., Colomer, J. 2016. Short-term load forecasting for non-residential buildings contrasting artificial occupancy attributes. Energy and Buildings, 130(2016), 519-531.
  • [25] Moody, G. B., Mark, R. G. 2001. The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Medicine and Biology Magazine, 20(2001), 45-50.
Year 2018, Volume: 22 Issue: 2, 380 - 387, 15.08.2018
https://doi.org/10.19113/sdufbed.82260

Abstract

References

  • [1] Wei, J. J., Chang, C. J., Chou, N. K., Jan, G. J. 2001. ECG data compression using truncated singular value decomposition. IEEE Transactions on Information Technology in Biomedicine, 5(2001), 290-299.
  • [2] Jalaleddine, S. M., Hutchens, C. G., Strattan, R. D., Coberly, W. A. 1990. ECG data compression techniques-a unified approach. IEEE transactions on Biomedical Engineering, 37(1990), 329-343.
  • [3] Manikandan, M. S., Dandapat, S. 2014. Wavelet-based electrocardiogram signal compression methods and their performances: a prospective review. Biomedical Signal Processing and Control, 14(2014), 73-107.
  • [4] Singh, B., Kaur, A., Singh, J. 2015. A review of ecg data compression techniques. International journal of computer applications, 116(2015), 39-44.
  • [5] Olmos, S., MillAn, M., Garcia, J., Laguna, P. 1996. ECG data compression with the Karhunen-Loeve transform. In Computers in Cardiology, Indianapolis, 8-11 September, USA, 253-256.
  • [6] Reddy, B. S., Murthy, I. S. N. 1986. ECG data compression using Fourier descriptors. IEEE Transactions on Biomedical Engineering, 4(1986), 428-434.
  • [7] Benzid, R., Messaoudi, A., Boussaad, A. 2008. Constrained ECG compression algorithm using the block-based discrete cosine transform. Digital Signal Processing, 18(2008), 56-64.
  • [8] Shinde, A. A., Kanjalkar, P. 2011. The comparison of different transform based methods for ECG data compression, Uluslararası konferans, ICSCCN-IEEE, 21-22 June, Thuckafay, India, 332-335.
  • [9] Addison, P. S. 2005. Wavelet transforms and the ECG: a review. Physiological measurement, 26(2005), R155.
  • [10] Karal, O. 2018. Destek Vektör Regresyon ile EKG Verilerinin Sıkıştırılması, Journal of the Faculty of Engineering and Architecture of Gazi University (In press).
  • [11] Karal, O. 2017. Maximum likelihood optimal and robust Support Vector Regression with lncosh loss function. Neural Networks, 94(2017), 1-12.
  • [12] Cortes, C., Vapnik, V. 1995. Support-vector networks, Mach. Learn., 20(3), 273-297, 1995.
  • [13] Smola, A. J., Schölkopf, B. 2004. A tutorial on support vector regression. Statistics and computing, 14(2004), 199-222.
  • [14] Mahmoodian, H., Ebrahimian, L. 2016. Using support vector regression in gene selection and fuzzy rule generation for relapse time prediction of breast cancer. Biocybernetics and Biomedical Engineering, 36(2016), 466-472.
  • [15] Valizadeh, M., Sohrabi, M. R. 2018. The application of artificial neural networks and support vector regression for simultaneous spectrophotometric determination of commercial eye drop contents. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 193(2018), 297-304.
  • [16] Huber, M. B., Lancianese, S. L., Nagarajan, M. B., Ikpot, I. Z., Lerner, A. L., Wismuller, A. 2011. Prediction of biomechanical properties of trabecular bone in MR images with geometric features and support vector regression. IEEE Transactions on Biomedical Engineering, 58(2011), 1820-1826.
  • [17] Guermoui, M., Mekhalfi, M. L., Ferroudji, K. 2013. Heart sounds analysis using wavelets responses and support vector machines. In Systems, Signal Processing and their Applications (WoSSPA), IEEE, May 2013, 8th International Workshop on, 233-238.
  • [18] Hu, Q., Zhang, S., Yu, M., Xie, Z. 2016. Short-term wind speed or power forecasting with heteroscedastic support vector regression. IEEE Trans. Sustainable Energy, 7(2016), 241-249.
  • [19] Khosravi, A., Koury, R. N. N., Machado, L., Pabon, J. J. G. 2018. Prediction of wind speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference system. Sustainable Energy Technologies and Assessments, 25(2018), 146-160.
  • [20] Guermoui, M., Rabehi, A., Gairaa, K., Benkaciali, S. 2018. Support vector regression methodology for estimating global solar radiation in Algeria. The European Physical Journal Plus, 133(2018), 22.
  • [21] Das, U. K., Tey, K. S., Seyedmahmoudian, M., Mekhilef, S., Idris, M. Y. I., Van Deventer, W., Stojcevski, A. 2018. Forecasting of photovoltaic power generation and model optimization: A review. Renewable and Sustainable Energy Reviews, 81(2018), 912-928.
  • [22] Yaslan, Y., Bican, B. 2017. Empirical mode decomposition based denoising method with support vector regression for time series prediction: a case study for electricity load forecasting. Measurement, 103(2017), 52-61.
  • [23] Nava, N., Matteo, T. D., Aste, T. 2018. Financial Time Series Forecasting Using Empirical Mode Decomposition and Support Vector Regression. Risks, 6(2018), 7.
  • [24] Massana, J., Pous, C., Burgas, L., Melendez, J., Colomer, J. 2016. Short-term load forecasting for non-residential buildings contrasting artificial occupancy attributes. Energy and Buildings, 130(2016), 519-531.
  • [25] Moody, G. B., Mark, R. G. 2001. The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Medicine and Biology Magazine, 20(2001), 45-50.
There are 25 citations in total.

Details

Journal Section Articles
Authors

Omer Karal

Publication Date August 15, 2018
Published in Issue Year 2018 Volume: 22 Issue: 2

Cite

APA Karal, O. (2018). ECG Data Compression Using ε-insensitive Quadratic Loss Function. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 380-387. https://doi.org/10.19113/sdufbed.82260
AMA Karal O. ECG Data Compression Using ε-insensitive Quadratic Loss Function. J. Nat. Appl. Sci. August 2018;22(2):380-387. doi:10.19113/sdufbed.82260
Chicago Karal, Omer. “ECG Data Compression Using -Insensitive Quadratic Loss Function”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no. 2 (August 2018): 380-87. https://doi.org/10.19113/sdufbed.82260.
EndNote Karal O (August 1, 2018) ECG Data Compression Using ε-insensitive Quadratic Loss Function. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 2 380–387.
IEEE O. Karal, “ECG Data Compression Using ε-insensitive Quadratic Loss Function”, J. Nat. Appl. Sci., vol. 22, no. 2, pp. 380–387, 2018, doi: 10.19113/sdufbed.82260.
ISNAD Karal, Omer. “ECG Data Compression Using -Insensitive Quadratic Loss Function”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/2 (August 2018), 380-387. https://doi.org/10.19113/sdufbed.82260.
JAMA Karal O. ECG Data Compression Using ε-insensitive Quadratic Loss Function. J. Nat. Appl. Sci. 2018;22:380–387.
MLA Karal, Omer. “ECG Data Compression Using -Insensitive Quadratic Loss Function”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, no. 2, 2018, pp. 380-7, doi:10.19113/sdufbed.82260.
Vancouver Karal O. ECG Data Compression Using ε-insensitive Quadratic Loss Function. J. Nat. Appl. Sci. 2018;22(2):380-7.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.