ElectroCardioGram (ECG) is a graphical representation of the electrical activity that occurred during the heartbeat. It plays a significant role in the diagnosis and analysis of heart diseases. ECG signals must be recorded continuously for the effective detection and diagnosis of heart diseases. However, such records as it produces large amounts of data at a level that makes it difficult storage and transmission can also be impaired due to the ambient noise. Thanks to the reasons mentioned above, an efficient ECG data compression algorithm is required even in a noisy environment. This study proposes ε-insensitive quadratic loss based Support Vector Regression (ε-quadratic SVR) technique for the compression of ECG signals. There is a well-known relationship between loss functions and noise distributions. The proposed ε-insensitive quadratic loss function provides the optimal solution against Gaussian noise. Computer simulation results show that the proposed loss function is an attractive candidate for ECG data compression in the presence of Gaussian noise.
Data compression Electrocardiogram; Modeling; Quadratic loss function; Support vector regression
Journal Section | Articles |
---|---|
Authors | |
Publication Date | August 15, 2018 |
Published in Issue | Year 2018 Volume: 22 Issue: 2 |
e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688
All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.