BibTex RIS Cite

A Theoretical Study of Structural, Electronic and Elastic Properties of the Antiperovskite SnNCa3

Year 2018, Volume: 22 Issue: 2, 482 - 487, 15.08.2018

Abstract

The structural, mechanical, electronic and phonon properties of antiperovskite SnNCa3 compound in the cubic phase were systematically investigated by means of the density functional theory. The computed lattice constants and bulk modulus are well in accordance with the literature. The mechanical stability of the compound was examined via obtained elastic constants. The results indicated that SnNCa3 antiperovskite compound is mechanically stable and brittle based on the Pugh`s criteria. The electronic band structure of the compound suggest that the material is metallic; the largest contribution to the conductivity are due to electrons of Sn-5p, N-2p and Ca-3d orbitals. In addition, phonon distribution curves and their corresponding density of states were obtained for the first time using the linear response approach by means of the density functional perturbation theory. The phonon properties investigation exhibited that SnNCa3 antiperovskite compound is dynamically stable.

References

  • [1] Souza, E. C. C. D., Muccillo R., 2010. Properties and applications of perovskite proton conductors. Materials Research, 13(2010), 385-394.
  • [2] Bilal, M., Jalali-Asadabadi, S., Ahmad, R., Ahmad, I. 2015. Electronic Properties of Antiperovskite Materials from State-of-the-Art Density Functional Theory. Journal of Chemistry, 2015(2015), 11.
  • [3] Sharma, R., Dwivedi S., Sharma Y. 2015. Hydrides of YPd3: Electronic structure and dynamic stability. International Journal of Hydrogen Energy, 40(2015), 1071-1082.
  • [4] Iqbal, S., Murtaza, G., Khenata, R., Mahmood, A., Yar, A., Muzammil, M., Khan, M. 2016. Electronic and Optical Properties of Ca3MN (M = Ge, Sn, Pb, P, As, Sb and Bi) Antiperovskite Compounds. Journal of Electronic Materials, 45(2016), 4188-4196.
  • [5] Chern, M. Y., Vennos D. A., Disalvo F. J. 1992. Synthesis, structure, and properties of anti-perovskite nitrides Ca3MN, M=P, As, Sb, Bi, Ge, Sn, and Pb. Journal of Solid State Chemistry, 96(1992), 415-425.
  • [6] Cherrad, D., Maouche D., Louail L., Maamache M., 2010. Ab initio comparative study of the structural, elastic and electronic properties of SnAMn3(A=N,C) antiperovskite cubic compounds. Solid State Communications, 150(2010), 782-787.
  • [7] Moakafi, M., Khenata, R., Bouhemadou, A., Semari, F., Reshak, A. H., Rabah, M. 2009. Elastic, electronic and optical properties of cubic antiperovskites SbNCa3 and BiNCa3. Computational Materials Science, 46(2009), 1051-1057.
  • [8] Bouhemadou, A., Khenata, R. 2007. Ab initio study of the structural, elastic, electronic and optical properties of the antiperovskite SbNMg3. Computational Materials Science, 39(2007), 803-807.
  • [9] Bilal, M., Saifullah, Ahmad I., Jalali-Asadabadi S., Ahmad R., and Shafiq M., 2016. DFT and post-DFT studies of metallic MXY3-type compounds for low temperature TE applications. Solid State Communications, 243(2016), 28-35.
  • [10] Lin, S., Huang, Y., Lin, J., Tong, P., Song, W., Zhu, X., Sun, Y. 2016. Role of chemical doping on the enhancement of thermoelectric performance in metal-based thermoelectric system SnCCo3. Journal of Alloys and Compounds, 688(2016), 565-570.
  • [11] Iqbal, R., Bilal, M., Jalali-Asadabadi, S., Rahnamayealiabad, H. A., Ahmad, I. Theoretical investigation of thermoelectric and elastic properties of intermetallic compounds ScTM (TM = Cu, Ag, Au and Pd). International Journal of Modern Physics B, 0(1850004.
  • [12] Haddadi, K., Bouhemadou, A., Louail, L. 2010. Structural, elastic and electronic properties of the hexagonal anti-perovskites SbNBa3 and BiNBa3. Computational Materials Science, 48(2010), 711-718.
  • [13] Bilal, M., Ahmad, I. Asadabadi, S. J., Ahmad, R., Maqbool, M. 2015. Thermoelectric properties of metallic antiperovskites AXD3 (A=Ge, Sn, Pb, Al, Zn, Ga; X=N, C; D=Ca, Fe, Co). Electronic Materials Letters, 11(2015), 466-480.
  • [14] Haddadi, K., Bouhemadou, A., Louail, L., Medkour, Y. 2009. Structural, elastic and electronic properties of XNCa3 (X = Ge, Sn and Pb) compounds. Solid State Communications, 149(2009), 619-624.
  • [15] Niewa, R., Schnelle, W., Wagner, F. 2001. Synthesis, crystal structure, and physical properties of (Ca3N) Tl. Zeitschrift für anorganische und allgemeine Chemie, 627(2001), 365-370.
  • [16] Jäger, J., Stahl, D., Schmidt, P. C., Kniep, R., 1993. Ca3AuN: ein Calciumauridsubnitrid. Angewandte Chemie, 105(1993), 738-739.
  • [17] Okoye, C. 2006. First-principles optical calculations of AsNMg3 and SbNMg3. Materials Science and Engineering: B, 130(2006), 101-107.
  • [18] Shein, I., Ivanovskii A., 2004. Electronic band structure and chemical bonding in the new antiperovskites AsNMg3 and SbNMg3. Journal of Solid State Chemistry, 177(2004), 61-64.
  • [19] Gäbler, F., Kirchner, M., Schnelle, W., Schwarz, U., Schmitt, M., Rosner, H., Niewa, R. 2004. (Sr3N) E and (Ba3N) E (E= Sb, Bi): synthesis, crystal structures, and physical properties. Zeitschrift für anorganische und allgemeine Chemie, 630(2004), 2292-2298.
  • [20] Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I. 2009. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter, 21(2009), 395502.
  • [21] Perdew, J. P., Burke K., Ernzerhof, M. 1996. Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(1996), 3865-3868.
  • [22] Methfessel, M., Paxton A. 1989. High-precision sampling for Brillouin-zone integration in metals. Physical Review B, 40(1989), 3616.
  • [23] Arıkan, N., Örnek, O., Charifi, Z., Baaziz, H., Uğur, Ş., Uğur, G. 2016. A first-principle study of Os-based compounds: Electronic structure and vibrational properties. Journal of Physics and Chemistry of Solids, 96-97(2016), 121-127.
  • [24] İyigör, A., Özduran, M., Ünsal, M., Örnek, O., Arıkan, N. 2017. Ab-initio study of the structural, electronic, elastic and vibrational properties of HfX (X= Rh, Ru and Tc). Philosophical Magazine Letters, 97(2017), 110-117.
  • [25] Shein, I., Shein, K., Ivanovskii, A. 2007. Elastic and electronic properties and stability of SrThO3, SrZrO3 and ThO2 from first principles. Journal of nuclear materials, 361(2007), 69-77.
  • [26] Mott, N. F., Jones, H. The theory of the properties of metals and alloys. 1958: Courier Corporation.
  • [27] İyigör, A., Uğur, Ş. 2014. Elastic and phonon properties of quaternary Heusler alloys CoFeCrZ (Z = Al, Si, Ga and Ge) from density functional theory. Philosophical Magazine Letters, 94(2014), 708-715.
  • [28] Born, M. and Huang K., Theory of Crystal Lattices, Clarendon. 1956, Oxford.
  • [29] Pugh, S. F. 1954. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philosophical Magazine and Journal of Science, 45(1954), 823-843.
  • [30] Haines, J., Leger, J., Bocquillon, G. 2001. Synthesis and design of superhard materials. Annual Review of Materials Research, 31(2001), 1-23.
  • [31] Johnson, R. 1988. Analytic nearest-neighbor model for fcc metals. Physical Review B, 37(1988), 3924.
Year 2018, Volume: 22 Issue: 2, 482 - 487, 15.08.2018

Abstract

References

  • [1] Souza, E. C. C. D., Muccillo R., 2010. Properties and applications of perovskite proton conductors. Materials Research, 13(2010), 385-394.
  • [2] Bilal, M., Jalali-Asadabadi, S., Ahmad, R., Ahmad, I. 2015. Electronic Properties of Antiperovskite Materials from State-of-the-Art Density Functional Theory. Journal of Chemistry, 2015(2015), 11.
  • [3] Sharma, R., Dwivedi S., Sharma Y. 2015. Hydrides of YPd3: Electronic structure and dynamic stability. International Journal of Hydrogen Energy, 40(2015), 1071-1082.
  • [4] Iqbal, S., Murtaza, G., Khenata, R., Mahmood, A., Yar, A., Muzammil, M., Khan, M. 2016. Electronic and Optical Properties of Ca3MN (M = Ge, Sn, Pb, P, As, Sb and Bi) Antiperovskite Compounds. Journal of Electronic Materials, 45(2016), 4188-4196.
  • [5] Chern, M. Y., Vennos D. A., Disalvo F. J. 1992. Synthesis, structure, and properties of anti-perovskite nitrides Ca3MN, M=P, As, Sb, Bi, Ge, Sn, and Pb. Journal of Solid State Chemistry, 96(1992), 415-425.
  • [6] Cherrad, D., Maouche D., Louail L., Maamache M., 2010. Ab initio comparative study of the structural, elastic and electronic properties of SnAMn3(A=N,C) antiperovskite cubic compounds. Solid State Communications, 150(2010), 782-787.
  • [7] Moakafi, M., Khenata, R., Bouhemadou, A., Semari, F., Reshak, A. H., Rabah, M. 2009. Elastic, electronic and optical properties of cubic antiperovskites SbNCa3 and BiNCa3. Computational Materials Science, 46(2009), 1051-1057.
  • [8] Bouhemadou, A., Khenata, R. 2007. Ab initio study of the structural, elastic, electronic and optical properties of the antiperovskite SbNMg3. Computational Materials Science, 39(2007), 803-807.
  • [9] Bilal, M., Saifullah, Ahmad I., Jalali-Asadabadi S., Ahmad R., and Shafiq M., 2016. DFT and post-DFT studies of metallic MXY3-type compounds for low temperature TE applications. Solid State Communications, 243(2016), 28-35.
  • [10] Lin, S., Huang, Y., Lin, J., Tong, P., Song, W., Zhu, X., Sun, Y. 2016. Role of chemical doping on the enhancement of thermoelectric performance in metal-based thermoelectric system SnCCo3. Journal of Alloys and Compounds, 688(2016), 565-570.
  • [11] Iqbal, R., Bilal, M., Jalali-Asadabadi, S., Rahnamayealiabad, H. A., Ahmad, I. Theoretical investigation of thermoelectric and elastic properties of intermetallic compounds ScTM (TM = Cu, Ag, Au and Pd). International Journal of Modern Physics B, 0(1850004.
  • [12] Haddadi, K., Bouhemadou, A., Louail, L. 2010. Structural, elastic and electronic properties of the hexagonal anti-perovskites SbNBa3 and BiNBa3. Computational Materials Science, 48(2010), 711-718.
  • [13] Bilal, M., Ahmad, I. Asadabadi, S. J., Ahmad, R., Maqbool, M. 2015. Thermoelectric properties of metallic antiperovskites AXD3 (A=Ge, Sn, Pb, Al, Zn, Ga; X=N, C; D=Ca, Fe, Co). Electronic Materials Letters, 11(2015), 466-480.
  • [14] Haddadi, K., Bouhemadou, A., Louail, L., Medkour, Y. 2009. Structural, elastic and electronic properties of XNCa3 (X = Ge, Sn and Pb) compounds. Solid State Communications, 149(2009), 619-624.
  • [15] Niewa, R., Schnelle, W., Wagner, F. 2001. Synthesis, crystal structure, and physical properties of (Ca3N) Tl. Zeitschrift für anorganische und allgemeine Chemie, 627(2001), 365-370.
  • [16] Jäger, J., Stahl, D., Schmidt, P. C., Kniep, R., 1993. Ca3AuN: ein Calciumauridsubnitrid. Angewandte Chemie, 105(1993), 738-739.
  • [17] Okoye, C. 2006. First-principles optical calculations of AsNMg3 and SbNMg3. Materials Science and Engineering: B, 130(2006), 101-107.
  • [18] Shein, I., Ivanovskii A., 2004. Electronic band structure and chemical bonding in the new antiperovskites AsNMg3 and SbNMg3. Journal of Solid State Chemistry, 177(2004), 61-64.
  • [19] Gäbler, F., Kirchner, M., Schnelle, W., Schwarz, U., Schmitt, M., Rosner, H., Niewa, R. 2004. (Sr3N) E and (Ba3N) E (E= Sb, Bi): synthesis, crystal structures, and physical properties. Zeitschrift für anorganische und allgemeine Chemie, 630(2004), 2292-2298.
  • [20] Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I. 2009. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter, 21(2009), 395502.
  • [21] Perdew, J. P., Burke K., Ernzerhof, M. 1996. Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(1996), 3865-3868.
  • [22] Methfessel, M., Paxton A. 1989. High-precision sampling for Brillouin-zone integration in metals. Physical Review B, 40(1989), 3616.
  • [23] Arıkan, N., Örnek, O., Charifi, Z., Baaziz, H., Uğur, Ş., Uğur, G. 2016. A first-principle study of Os-based compounds: Electronic structure and vibrational properties. Journal of Physics and Chemistry of Solids, 96-97(2016), 121-127.
  • [24] İyigör, A., Özduran, M., Ünsal, M., Örnek, O., Arıkan, N. 2017. Ab-initio study of the structural, electronic, elastic and vibrational properties of HfX (X= Rh, Ru and Tc). Philosophical Magazine Letters, 97(2017), 110-117.
  • [25] Shein, I., Shein, K., Ivanovskii, A. 2007. Elastic and electronic properties and stability of SrThO3, SrZrO3 and ThO2 from first principles. Journal of nuclear materials, 361(2007), 69-77.
  • [26] Mott, N. F., Jones, H. The theory of the properties of metals and alloys. 1958: Courier Corporation.
  • [27] İyigör, A., Uğur, Ş. 2014. Elastic and phonon properties of quaternary Heusler alloys CoFeCrZ (Z = Al, Si, Ga and Ge) from density functional theory. Philosophical Magazine Letters, 94(2014), 708-715.
  • [28] Born, M. and Huang K., Theory of Crystal Lattices, Clarendon. 1956, Oxford.
  • [29] Pugh, S. F. 1954. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philosophical Magazine and Journal of Science, 45(1954), 823-843.
  • [30] Haines, J., Leger, J., Bocquillon, G. 2001. Synthesis and design of superhard materials. Annual Review of Materials Research, 31(2001), 1-23.
  • [31] Johnson, R. 1988. Analytic nearest-neighbor model for fcc metals. Physical Review B, 37(1988), 3924.
There are 31 citations in total.

Details

Journal Section Articles
Authors

Selgin Al

Ahmet İyigör

Publication Date August 15, 2018
Published in Issue Year 2018 Volume: 22 Issue: 2

Cite

APA Al, S., & İyigör, A. (2018). A Theoretical Study of Structural, Electronic and Elastic Properties of the Antiperovskite SnNCa3. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 482-487.
AMA Al S, İyigör A. A Theoretical Study of Structural, Electronic and Elastic Properties of the Antiperovskite SnNCa3. J. Nat. Appl. Sci. August 2018;22(2):482-487.
Chicago Al, Selgin, and Ahmet İyigör. “A Theoretical Study of Structural, Electronic and Elastic Properties of the Antiperovskite SnNCa3”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no. 2 (August 2018): 482-87.
EndNote Al S, İyigör A (August 1, 2018) A Theoretical Study of Structural, Electronic and Elastic Properties of the Antiperovskite SnNCa3. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 2 482–487.
IEEE S. Al and A. İyigör, “A Theoretical Study of Structural, Electronic and Elastic Properties of the Antiperovskite SnNCa3”, J. Nat. Appl. Sci., vol. 22, no. 2, pp. 482–487, 2018.
ISNAD Al, Selgin - İyigör, Ahmet. “A Theoretical Study of Structural, Electronic and Elastic Properties of the Antiperovskite SnNCa3”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/2 (August 2018), 482-487.
JAMA Al S, İyigör A. A Theoretical Study of Structural, Electronic and Elastic Properties of the Antiperovskite SnNCa3. J. Nat. Appl. Sci. 2018;22:482–487.
MLA Al, Selgin and Ahmet İyigör. “A Theoretical Study of Structural, Electronic and Elastic Properties of the Antiperovskite SnNCa3”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, no. 2, 2018, pp. 482-7.
Vancouver Al S, İyigör A. A Theoretical Study of Structural, Electronic and Elastic Properties of the Antiperovskite SnNCa3. J. Nat. Appl. Sci. 2018;22(2):482-7.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.