BibTex RIS Cite

The Effect of Nonwoven Electrospun PAN Nanofiber Mat on Mechanical and Thermal Properties of Epoxy Composites

Year 2018, Volume: 22 Issue: 2, 528 - 535, 15.08.2018

Abstract

In this study mechanical and thermal properties of epoxy resin reinforced with different numbers of nanofiber layers which produced with electrospinning method was investigated. Solution of 10 wt% of polyacrylonitrile (PAN) in N,N-dimethylformamide (DMF) was used for electrospinning. The diameters of the obtained nanofibers were in the range of 380-420 nm. The average thickness of the produced nanofiber layer was about 200 µm. The special molds were prepared to produce the laminated composite plates. The tensile tests show that the using of nanofiber PAN layers increase the tensile force 34.54% and decrease the elongation 8.87% in comparison with neat epoxy. The fracture surfaces of the specimens were inspected by using optical and scanning electron microscopy (SEM). The thermal properties of the nanofiber layered composites were determined by thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis. It was observed that the glass transition temperature increased parallel to this as the number of PAN layers increased and rose up to 86ᵒC, while the thermal stability did not show much effect of PAN layers.

References

  • [1] Ueki, T., Nishijima, S., Izumi, Y. 2005. Designing of epoxy resin systems for cryogenic use. Cryogenics, 45(2), 141–8.
  • [2] Kang, S., Hong, SI., Choe, CR., Park, M., Rim, S., Kim, J. 2001. Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol–gel process. Polymer, 42(3), 879–87.
  • [3] Shan, X., Huang, C., Yang, H., Wu, Z., Li, J., Huang, R., et al. 2015. The thermal expansion and tensile properties of nanofiber-ZrW2O8 reinforced epoxy resin nanocomposites. Phys Procedia, 67, 1056–61.
  • [4] Chen, IH., Wang, CC., Chen, CY. 2010. Preparation of carbon nanotube (CNT) composites by polymer functionalized CNT under plasma treatment. Plasma Process Polymers, 7(1), 59–63.
  • [5] Li, J., Wu, Z., Huang, C., Liu, H., Huang, R., Li, L. 2014. Mechanical properties of cyanate ester/epoxy nanocomposites modified with plasma functionalized MWCNTs. Composites Science and Technology, 90,166–73.
  • [6] Huang, ZM., Zhang, YZ., Kotaki, M., Ramakrishna, S. 2003. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223–53.
  • [7] Palazzetti, R., Zucchelli, A., Gualandi, C., Focarete, ML., Donati, L., Minak, G., et al. 2012. Influence of electrospun Nylon 6,6 nanofibrous mats on the interlaminar properties of Gr-epoxy composite laminates. Composite structures, 94(2), 571–9.
  • [8] Kim, JS., Reneker, DH. 1999. Mechanical properties of composites using ultrafine electrospun fibers. Polymer Composites, 20(1), 124–31.
  • [9] Borkar, S., Gu, B., Dirmyer, M., Delicado, R., Sen, A., Jackson, BR., et al. 2006. Polytetrafluoroethylene nano/microfibers by jet blowing. Polymer, 47(25), 8337–43.
  • [10] Ellison, C.J, Phatak, A., Giles, DW., Macosko, CW., Bates, FS. 2007. Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup. Polymer, 48(11), 3306–16.
  • [11] Wang, J., Langhe, D., Ponting, M., Wnek, GE., Korley, LT., Baer, E. 2014. Manufacturing of polymer continuous nanofibers using a novel co-extrusion and multiplication technique. Polymer, 55(2), 673–85.
  • [12] Zhang, X., Zhu, J., Haldolaarachchige, N., Ryu, J., Young, D. P., Wei, S., Guo, Z. 2012. Synthetic process engineered polyaniline nanostructures with tunable morphology and physical properties. Polymer, 53(10), 2109-2120.
  • [13] Zhao, S., Wu, X., Wang, L., & Huang, Y. 2004. Electrospinning of ethyl–cyanoethyl cellulose/tetrahydrofuran solutions. Journal of Applied Polymer Science, 91(1), 242-246.
  • [14] Yang, F., Murugan, R., Wang, S., Ramakrishna, S. 2005. Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 26(15), 2603-2610.
  • [15] Bhardwaj, N., Kundu, S. C. 2010. Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325-347.
  • [16] Jeun, JP., Kim, YK., Lim, YM., Choi, JH., Jung, CH KP., Yc, N. 2007. Electrospinning of Poly (L-lactide-co-D, L-lactide). Journal of Industrial and Engineering Chemistry, 13(4), 592-596.
  • [17] Demir, MM., Yilgor, I., Yilgor, E., Erman, B. 2002. Electrospinning of polyurethane fibers. Polymer, 43(11), 3303-3309.
  • [18] Zhu, J., Wei, S., Rutman, D., Haldolaarachchige, N., Young, DP., Guo, Z. 2011. Magnetic polyacrylonitrile-Fe@ FeO nanocomposite fibers-Electrospinning, stabilization and carbonization. Polymer, 52(13):2947–2955.
  • [19] Zhu, J., Chen, M., Qu, H., Wei, H., Guo, J., Luo, Z., Guo, Z. 2014. Positive and negative magnetoresistance phenomena observed in magnetic electrospun polyacrylonitrile-based carbon nanocomposite fibers. Journal of Materials Chemistry C, 2(4), 715-722.
  • [20] Tomczak, N., Gu, S., Han, M., van Hulst, NF., Vancso, G.J. 2006. Single light emitters in electrospun polymer nanofibers: Effect of local confinement on radiative decay. European polymer journal, 42(10), 2205-2210.
  • [21] Qu, H., Wei, S., Guo, Z. 2013. Coaxial electrospun nanostructures and their applications. Journal of Materials Chemistry A, 1(38), 11513-11528.
  • [22] Almuhamed, S., Khenoussi, N., Bonne, M., Schacher, L., Lebeau, B., Adolphe, D., Brendlé, J. 2014. Electrospinning of PAN nanofibers incorporating SBA-15-type ordered mesoporous silica particles. European polymer journal, 54, 71-78.
  • [23] Shivakumar, K., Lingaiah, S., Chen, H., Akangah, P., Swaminathan, G., Russell, L. 2009. Polymer nanofabric interleaved composite laminates. AIAA journal, 47(7), 1723-1729.
  • [24] Sihn, S., Kim, RY., Huh, W., Lee, KH., Roy, AK. 2008. Improvement of damage resistance in laminated composites with electrospun nano-interlayers. Composites Science and Technology, 68(3-4), 673-683.
  • [25] Liu, L., Huang, ZM., He, CL., Han, X. 2006. Mechanical performance of laminated composites incorporated with nanofibrous membranes. Materials Science and Engineering: A, 435, 309-317.
  • [26] Zhang, J., Lin, T., Wang, X. 2010. Electrospun nanofibre toughened carbon/epoxy composites: Effects of polyetherketone cardo (PEK-C) nanofibre diameter and interlayer thickness. Composites Science and Technology, 70(11), 1660-1666.
  • [27] Lin, S., Cai, Q., Ji, J., Sui, G., Yu, Y., Yang, X., Deng, X. 2008. Electrospun nanofiber reinforced and toughened composites through in situ nano-interface formation. Composites Science and Technology, 68(15-16), 3322-3329.
  • [28] Akangah, P., Lingaiah, S., Shivakumar, K. 2010. Effect of Nylon-66 nano-fiber interleaving on impact damage resistance of epoxy/carbon fiber composite laminates. Composite Structures, 92(6), 1432-1439.
  • [29] Erdal, MO., Yazman, Ş., Gemi, L., Yapıcı, A. 2015. Çok Katmanlı Nanoelyaf Takviyesinin Epoksi Reçinenin Mekanik Özelliklerine Etkisinin İncelenmesi. Mühendislikte Yeni Teknolojiler Sempozyumu, 22-23 Ekim, Bayburt, 30-35.
  • [30] Jin, F-L., Ma, C-J., Park, S-J. 2011. Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes. Materials Science and Engineering: A, 528(29-30), 8517-8522.
  • [31] Yapici, A., Özkan, V., Yıldız, M., Erdal, M., Gemi, L., Yazman, Ş. 2016. The Effect of Nylon 6.6 Nanofiber Layers on Mechanical Properties of Epoxy. The International Journal of Engineering and Science, 5(11), 86-89.
  • [32] Yapici, A., Özkan, V., Yıldız, M., Erdal, M., Gemi, L., Yazman, Ş. 2016. The nylon 6.6 nanofiber layers’ effect on mechanical properties of epoxy. 12th International Nanoscience and Nanotechnology Conference, 03-05 June Kocaeli, 152.
  • [33] Tait, J., Davies, G., McIntyre, R., Yarwood, J. 1997. FTIR-ATR studies of interfacial interactions in epoxy resin/polymer laminate structures. Vibrational spectroscopy, 15(1), 79-89.
  • [34] Nacimiento, F., Alcántara, R., González, JR., Tirado, JL. 2012. Electrodeposited polyacrylonitrile and cobalt-tin composite thin film on titanium substrate. Journal of The Electrochemical Society, 159(7), A1028-A1033.
  • [35] Goyat, M., Suresh, S., Bahl, S., Halder, S., & Ghosh, P. 2015. Thermomechanical response and toughening mechanisms of a carbon nano bead reinforced epoxy composite. Materials Chemistry and Physics, 166, 144-152.
  • [36] Gemi, L., Yazman, Ş., Uludağ, M., Dışpınar, D. 2017. The effect of 0.5 wt% additions of carbon nanotubes & ceramic nanoparticles on tensile properties of epoxy-matrix composites: A comparative study. Materials Science and Nanotechnology, 1(2), 15-22.
  • [37] Yazman, Ş., Gemi, L., Uludağ, M., Dışpınar, D. 2015. Investigation of The Effect of Carbon Nanotube Ratio on The Wear Behavior of Carbon Nanotube/Epoxy Nanocomposites. International Journal of Enhanced Research in Science, Technology & Engineering, 4(7), 201-207.
  • [38] Güneş, E., Erdal, M., Gemi, L. 2017. The effect of nanofiber on the biological traits of Drosophila Melanogaster. Sakarya University Journal of Science, 26(6), 1612-1617.
  • [39] Morkavuk, S., Köklü, U., Bağcı, M., Gemi, L. 2018. Cryogenic machining of carbon fiber reinforced plastic (CFRP) composites and the effects of cryogenic treatment on tensile properties: A comparative study. Composites Part B: Engineering, 147, 1-11.
Year 2018, Volume: 22 Issue: 2, 528 - 535, 15.08.2018

Abstract

References

  • [1] Ueki, T., Nishijima, S., Izumi, Y. 2005. Designing of epoxy resin systems for cryogenic use. Cryogenics, 45(2), 141–8.
  • [2] Kang, S., Hong, SI., Choe, CR., Park, M., Rim, S., Kim, J. 2001. Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol–gel process. Polymer, 42(3), 879–87.
  • [3] Shan, X., Huang, C., Yang, H., Wu, Z., Li, J., Huang, R., et al. 2015. The thermal expansion and tensile properties of nanofiber-ZrW2O8 reinforced epoxy resin nanocomposites. Phys Procedia, 67, 1056–61.
  • [4] Chen, IH., Wang, CC., Chen, CY. 2010. Preparation of carbon nanotube (CNT) composites by polymer functionalized CNT under plasma treatment. Plasma Process Polymers, 7(1), 59–63.
  • [5] Li, J., Wu, Z., Huang, C., Liu, H., Huang, R., Li, L. 2014. Mechanical properties of cyanate ester/epoxy nanocomposites modified with plasma functionalized MWCNTs. Composites Science and Technology, 90,166–73.
  • [6] Huang, ZM., Zhang, YZ., Kotaki, M., Ramakrishna, S. 2003. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223–53.
  • [7] Palazzetti, R., Zucchelli, A., Gualandi, C., Focarete, ML., Donati, L., Minak, G., et al. 2012. Influence of electrospun Nylon 6,6 nanofibrous mats on the interlaminar properties of Gr-epoxy composite laminates. Composite structures, 94(2), 571–9.
  • [8] Kim, JS., Reneker, DH. 1999. Mechanical properties of composites using ultrafine electrospun fibers. Polymer Composites, 20(1), 124–31.
  • [9] Borkar, S., Gu, B., Dirmyer, M., Delicado, R., Sen, A., Jackson, BR., et al. 2006. Polytetrafluoroethylene nano/microfibers by jet blowing. Polymer, 47(25), 8337–43.
  • [10] Ellison, C.J, Phatak, A., Giles, DW., Macosko, CW., Bates, FS. 2007. Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup. Polymer, 48(11), 3306–16.
  • [11] Wang, J., Langhe, D., Ponting, M., Wnek, GE., Korley, LT., Baer, E. 2014. Manufacturing of polymer continuous nanofibers using a novel co-extrusion and multiplication technique. Polymer, 55(2), 673–85.
  • [12] Zhang, X., Zhu, J., Haldolaarachchige, N., Ryu, J., Young, D. P., Wei, S., Guo, Z. 2012. Synthetic process engineered polyaniline nanostructures with tunable morphology and physical properties. Polymer, 53(10), 2109-2120.
  • [13] Zhao, S., Wu, X., Wang, L., & Huang, Y. 2004. Electrospinning of ethyl–cyanoethyl cellulose/tetrahydrofuran solutions. Journal of Applied Polymer Science, 91(1), 242-246.
  • [14] Yang, F., Murugan, R., Wang, S., Ramakrishna, S. 2005. Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 26(15), 2603-2610.
  • [15] Bhardwaj, N., Kundu, S. C. 2010. Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325-347.
  • [16] Jeun, JP., Kim, YK., Lim, YM., Choi, JH., Jung, CH KP., Yc, N. 2007. Electrospinning of Poly (L-lactide-co-D, L-lactide). Journal of Industrial and Engineering Chemistry, 13(4), 592-596.
  • [17] Demir, MM., Yilgor, I., Yilgor, E., Erman, B. 2002. Electrospinning of polyurethane fibers. Polymer, 43(11), 3303-3309.
  • [18] Zhu, J., Wei, S., Rutman, D., Haldolaarachchige, N., Young, DP., Guo, Z. 2011. Magnetic polyacrylonitrile-Fe@ FeO nanocomposite fibers-Electrospinning, stabilization and carbonization. Polymer, 52(13):2947–2955.
  • [19] Zhu, J., Chen, M., Qu, H., Wei, H., Guo, J., Luo, Z., Guo, Z. 2014. Positive and negative magnetoresistance phenomena observed in magnetic electrospun polyacrylonitrile-based carbon nanocomposite fibers. Journal of Materials Chemistry C, 2(4), 715-722.
  • [20] Tomczak, N., Gu, S., Han, M., van Hulst, NF., Vancso, G.J. 2006. Single light emitters in electrospun polymer nanofibers: Effect of local confinement on radiative decay. European polymer journal, 42(10), 2205-2210.
  • [21] Qu, H., Wei, S., Guo, Z. 2013. Coaxial electrospun nanostructures and their applications. Journal of Materials Chemistry A, 1(38), 11513-11528.
  • [22] Almuhamed, S., Khenoussi, N., Bonne, M., Schacher, L., Lebeau, B., Adolphe, D., Brendlé, J. 2014. Electrospinning of PAN nanofibers incorporating SBA-15-type ordered mesoporous silica particles. European polymer journal, 54, 71-78.
  • [23] Shivakumar, K., Lingaiah, S., Chen, H., Akangah, P., Swaminathan, G., Russell, L. 2009. Polymer nanofabric interleaved composite laminates. AIAA journal, 47(7), 1723-1729.
  • [24] Sihn, S., Kim, RY., Huh, W., Lee, KH., Roy, AK. 2008. Improvement of damage resistance in laminated composites with electrospun nano-interlayers. Composites Science and Technology, 68(3-4), 673-683.
  • [25] Liu, L., Huang, ZM., He, CL., Han, X. 2006. Mechanical performance of laminated composites incorporated with nanofibrous membranes. Materials Science and Engineering: A, 435, 309-317.
  • [26] Zhang, J., Lin, T., Wang, X. 2010. Electrospun nanofibre toughened carbon/epoxy composites: Effects of polyetherketone cardo (PEK-C) nanofibre diameter and interlayer thickness. Composites Science and Technology, 70(11), 1660-1666.
  • [27] Lin, S., Cai, Q., Ji, J., Sui, G., Yu, Y., Yang, X., Deng, X. 2008. Electrospun nanofiber reinforced and toughened composites through in situ nano-interface formation. Composites Science and Technology, 68(15-16), 3322-3329.
  • [28] Akangah, P., Lingaiah, S., Shivakumar, K. 2010. Effect of Nylon-66 nano-fiber interleaving on impact damage resistance of epoxy/carbon fiber composite laminates. Composite Structures, 92(6), 1432-1439.
  • [29] Erdal, MO., Yazman, Ş., Gemi, L., Yapıcı, A. 2015. Çok Katmanlı Nanoelyaf Takviyesinin Epoksi Reçinenin Mekanik Özelliklerine Etkisinin İncelenmesi. Mühendislikte Yeni Teknolojiler Sempozyumu, 22-23 Ekim, Bayburt, 30-35.
  • [30] Jin, F-L., Ma, C-J., Park, S-J. 2011. Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes. Materials Science and Engineering: A, 528(29-30), 8517-8522.
  • [31] Yapici, A., Özkan, V., Yıldız, M., Erdal, M., Gemi, L., Yazman, Ş. 2016. The Effect of Nylon 6.6 Nanofiber Layers on Mechanical Properties of Epoxy. The International Journal of Engineering and Science, 5(11), 86-89.
  • [32] Yapici, A., Özkan, V., Yıldız, M., Erdal, M., Gemi, L., Yazman, Ş. 2016. The nylon 6.6 nanofiber layers’ effect on mechanical properties of epoxy. 12th International Nanoscience and Nanotechnology Conference, 03-05 June Kocaeli, 152.
  • [33] Tait, J., Davies, G., McIntyre, R., Yarwood, J. 1997. FTIR-ATR studies of interfacial interactions in epoxy resin/polymer laminate structures. Vibrational spectroscopy, 15(1), 79-89.
  • [34] Nacimiento, F., Alcántara, R., González, JR., Tirado, JL. 2012. Electrodeposited polyacrylonitrile and cobalt-tin composite thin film on titanium substrate. Journal of The Electrochemical Society, 159(7), A1028-A1033.
  • [35] Goyat, M., Suresh, S., Bahl, S., Halder, S., & Ghosh, P. 2015. Thermomechanical response and toughening mechanisms of a carbon nano bead reinforced epoxy composite. Materials Chemistry and Physics, 166, 144-152.
  • [36] Gemi, L., Yazman, Ş., Uludağ, M., Dışpınar, D. 2017. The effect of 0.5 wt% additions of carbon nanotubes & ceramic nanoparticles on tensile properties of epoxy-matrix composites: A comparative study. Materials Science and Nanotechnology, 1(2), 15-22.
  • [37] Yazman, Ş., Gemi, L., Uludağ, M., Dışpınar, D. 2015. Investigation of The Effect of Carbon Nanotube Ratio on The Wear Behavior of Carbon Nanotube/Epoxy Nanocomposites. International Journal of Enhanced Research in Science, Technology & Engineering, 4(7), 201-207.
  • [38] Güneş, E., Erdal, M., Gemi, L. 2017. The effect of nanofiber on the biological traits of Drosophila Melanogaster. Sakarya University Journal of Science, 26(6), 1612-1617.
  • [39] Morkavuk, S., Köklü, U., Bağcı, M., Gemi, L. 2018. Cryogenic machining of carbon fiber reinforced plastic (CFRP) composites and the effects of cryogenic treatment on tensile properties: A comparative study. Composites Part B: Engineering, 147, 1-11.
There are 39 citations in total.

Details

Journal Section Articles
Authors

Lokman Gemi

Mehmet Okan Erdal

Şakir Yazman

Ahmet Yapıcı

Publication Date August 15, 2018
Published in Issue Year 2018 Volume: 22 Issue: 2

Cite

APA Gemi, L., Erdal, M. O., Yazman, Ş., Yapıcı, A. (2018). The Effect of Nonwoven Electrospun PAN Nanofiber Mat on Mechanical and Thermal Properties of Epoxy Composites. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 528-535.
AMA Gemi L, Erdal MO, Yazman Ş, Yapıcı A. The Effect of Nonwoven Electrospun PAN Nanofiber Mat on Mechanical and Thermal Properties of Epoxy Composites. J. Nat. Appl. Sci. August 2018;22(2):528-535.
Chicago Gemi, Lokman, Mehmet Okan Erdal, Şakir Yazman, and Ahmet Yapıcı. “The Effect of Nonwoven Electrospun PAN Nanofiber Mat on Mechanical and Thermal Properties of Epoxy Composites”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no. 2 (August 2018): 528-35.
EndNote Gemi L, Erdal MO, Yazman Ş, Yapıcı A (August 1, 2018) The Effect of Nonwoven Electrospun PAN Nanofiber Mat on Mechanical and Thermal Properties of Epoxy Composites. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 2 528–535.
IEEE L. Gemi, M. O. Erdal, Ş. Yazman, and A. Yapıcı, “The Effect of Nonwoven Electrospun PAN Nanofiber Mat on Mechanical and Thermal Properties of Epoxy Composites”, J. Nat. Appl. Sci., vol. 22, no. 2, pp. 528–535, 2018.
ISNAD Gemi, Lokman et al. “The Effect of Nonwoven Electrospun PAN Nanofiber Mat on Mechanical and Thermal Properties of Epoxy Composites”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/2 (August 2018), 528-535.
JAMA Gemi L, Erdal MO, Yazman Ş, Yapıcı A. The Effect of Nonwoven Electrospun PAN Nanofiber Mat on Mechanical and Thermal Properties of Epoxy Composites. J. Nat. Appl. Sci. 2018;22:528–535.
MLA Gemi, Lokman et al. “The Effect of Nonwoven Electrospun PAN Nanofiber Mat on Mechanical and Thermal Properties of Epoxy Composites”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, no. 2, 2018, pp. 528-35.
Vancouver Gemi L, Erdal MO, Yazman Ş, Yapıcı A. The Effect of Nonwoven Electrospun PAN Nanofiber Mat on Mechanical and Thermal Properties of Epoxy Composites. J. Nat. Appl. Sci. 2018;22(2):528-35.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.