Bu çalışmada güç spektrum yoğunluğu, mel frekans kepstral katsayıları (MFKK) ve algısal doğrusal öngörü (ADÖ) yöntemleri; çıtırtı, üfürüm ve normal akciğer solunum seslerini ayrıştırmak amacıyla kullanılan öznitelik çıkarıcılar olarak görevlendirilmiştir. Ham özniteliklerden sekiz alt öznitelik kümesi (enerji, entropi, en küçülten, en büyülten, ortalama, standart sapma, eğrilik ve basıklık) çıkarılarak k-en yakın komşu ve destek vektör makineleri sınıflandırıcılarına birini dışarıda bırak şeması kullanılarak beslenmiştir. Önerilen algısal doğrusal öngörü katsayıları yöntemi güç spektrum yoğunluğundan daha iyi performans sergilerken mel frekans kepstral katsayıları ile başa baş performans göstermiştir. ADÖ yönteminin üç gruplu sınıflandırma performansı var olan literatürle karşılaştırılmıştır. Çıtırtı, üfürüm ve normal sınıfları (% 94, % 95.5, % 95.5 sırasıyla) için en iyi sonuçlara ADÖ tarafından ulaşılmıştır. Diğer taraftan tüm sınıf doğruluklarının en iyi ortalama sonucuna % 91.3 ile MFKK tarafından ulaşılmıştır. MFKK ve ADÖ yöntemlerinin sınıflandırma doğruluğunun model derecesine oldukça bağlı olduğu gözlemlenmiştir.
Akciğer solunum sesleri Çıtırtı; Üfürüm; Mel frekans kepstral katsayıları; Güç spektrum yoğunluğu; Algısal doğrusal öngörü katsayıları
Journal Section | Articles |
---|---|
Authors | |
Publication Date | August 15, 2018 |
Published in Issue | Year 2018 Volume: 22 Issue: 2 |
e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688
All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.