BibTex RIS Cite

Ksantin Biyosensörlerin Performansına Çeşitli Çok Duvarlı Karbon Nanotüplerin Etkisi

Year 2018, Volume: 22 Issue: 2, 832 - 839, 15.08.2018

Abstract

Bu çalışmada, fonksiyonel grup içermeyen (MWCNT) ve karboksil (COOH-MWCNT), hidroksil (OH-MWCNT) ve amino (NH2-MWCNT) grubu içeren çok duvarlı karbon nanotüplerin amperometrik ksantin biyosensörünün cevabına etkileri incelendi. Bu amaçla, MWCNT’ler ve ksantin oksidaz (XO) enzimi jelatin çözeltisi içinde dağıtıldı ve bu karışımlardan belirli miktarların camsı karbon elektrot yüzeyine damlatılması ile ksantin biyosensörleri hazırlandı. Bu biyosensörlerin optimum pH, enzim miktarı gibi çalışma koşulları belirlendi ve bu koşullarda biyosensörlerin performans faktörleri incelendi. NH2-MWCNT ile hazırlanan biyosensörün en yüksek duyarlık ile ksantine cevap verdiği gözlendi. Bu biyosensör ksantine <15 s gibi kısa bir cevap süresi ile 9,9×10-7 M – 9,4×10-4 M aralığında doğrusal cevap gösterdi ve gözlenebilme sınırı 8,7×10-7 M, duyarlığı 23,36 µA mM-1 olarak belirlendi.

References

  • [1] Pundir, C. S., Devi, R. 2014. Biosensing methods for xanthine determination: A review. Enzyme and Microbial Technology, 57, 55-62.
  • [2] Thandavan, K., Gandhi, S., Sethuraman, S., Rayappan, J. B. B., Krishnan, U. M. 2013. Development of electrochemical biosensor with nano-interface for xanthine sensing–A novel approach for fish freshness estimation. Food Chemistry, 139(1), 963-969.
  • [3] Pagliarussi, R. S., Freitas, L. A. P., Bastos, J. K. 2002. A quantitative method for the analysis of xanthine alkaloids in Paullinia cupana (guarana) by capillary column gas chromatography. Journal of Separation Science, 25, 371-374.
  • [4] Cooper, N., Khosravan, R., Erdmann, C., Fiene, J., Lee, J. W. 2006. Quantification of uric acid, xanthine and hypoxanthine in human serum by HPLC for pharmacodynamic studies. Journal of Chromatography B, 837, 1-10.
  • [5] Hlavay, J., Haemmerli, S., Gailbult, G. 1994. Fibre-optic biosensor for hypoxanthine and xanthine based on a chemiluminescence reaction. Biosensors and Bioelectronics, 9, 189-195.
  • [6] Amigo, J. M., Coello, J., Maspoch, S. 2005. Three-way partial least-squares regression for the simultaneous kinetic-enzymatic determination of xanthine and hypoxanthine in human urine. Analytical and Bioanalytical Chemistry, 382, 1380-1388.
  • [7] Dinçkaya, E. 1999. Enzim sensörleri, ss 81-142. Telefoncu, A., ed. 1999. Biyosensörler, Ege Ün. Yayınları, İzmir, 280s.
  • [8] Zhu, C., Yang, G., Li, H., Du, D., Lin, Y. 2014. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Analytical Chemistry, 87(1), 230-249.
  • [9] Erden, P. E., Pekyardımcı, Ş., Kılıç, E. 2012. Amperometric enzyme electrodes for xanthine determination with different mediators. Acta Chimica Slovenica, 59, 824-832.
  • [10] Devi, R., Yadav, S., Nehra, R., Yadav, S., Pundir, C. S. 2013. Electrochemical biosensor based on gold coated iron nanoparticles/chitosan composite bound xanthine oxidase for detection of xanthine in fish meat. Journal of Food Engineering, 115(2), 207-214.
  • [11] Dervisevic, M., Custiuc, E., Çevik, E., Şenel, M. 2015. Construction of novel xanthine biosensor by using polymeric mediator/MWCNT nanocomposite layer for fish freshness detection. Food Chemistry, 181, 277-283.
  • [12] Saadaoui, M., Sánchez, A., Díez, P., Raouafi, N., Pingarrón, J. M., Villalonga, R. 2016. Amperometric xanthine biosensors using glassy carbon electrodes modified with electrografted porous silica nanomaterials loaded with xanthine oxidase. Microchimica Acta, 183(6), 2023-2030.
  • [13] Dalkiran, B., Kacar, C., Erden, P. E., Kilic, E. 2014. Amperometric xanthine biosensors based on chitosan-Co3O4-multiwall carbon nanotube modified glassy carbon electrode. Sensors and Actuators B: Chemical, 200, 83-91.
  • [14] Dalkıran, B., Erden, P. E., Kılıç, E. 2017. Amperometric biosensors based on carboxylated multiwalled carbon nanotubes-metal oxide nanoparticles-7, 7, 8, 8-tetracyanoquinodimethane composite for the determination of xanthine. Talanta, 167, 286-295.
  • [15] Çevik, S. 2016. Xanthine biosensor based on XO/AuNP/PtNP/MWCNT hybrid nanocomposite modified GCPE. Biotechnology and Bioprocess Engineering, 21(2), 314-320.
  • [16] Devi, R., Yadav, S., Pundir, C. S. 2012. Amperometric determination of xanthine in fish meat by zinc oxide nanoparticle/chitosan/multiwalled carbon nanotube/polyaniline composite film bound xanthine oxidase. Analyst, 137(3), 754-759.
  • [17] Anik, Ü., Çevik, S. 2009. Double-walled carbon nanotube based carbon paste electrode as xanthine biosensor. Microchimica Acta, 166(3-4), 209-213.
  • [18] Kaçar, C., Dalkıran, B., Erden, P. E., Kılıç, E. 2014. An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode. Applied Surface Science, 311, 139-146.
  • [19] Dalkıran, B., Erden, P. E., Kılıç, E. 2016. Electrochemical biosensing of galactose based on carbon materials: graphene versus multi-walled carbon nanotubes. Analytical and Bioanalytical Chemistry, 408(16), 4329-4339.
  • [20] Hammond, J. L., Formisano, N., Estrela, P., Carrara, S., Tkac, J. 2016. Electrochemical biosensors and nanobiosensors. Essays in Biochemistry, 60, 69-80.
  • [21] Zhu, N., Gao, H., Xu, Q., Lin, Y., Su, L., Mao, L. 2010. Sensitive impedimetric DNA biosensor with poly (amidoamine) dendrimer covalently attached onto carbon nanotube electronic transducers as the tether for surface confinement of probe DNA. Biosensors and Bioelectronics, 25(6), 1498-1503.
  • [22] Wang, J., Musameh, M., Lin, Y. 2003. Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. Journal of the American Chemical Society, 125(9), 2408-2409.
  • [23] Tkac, J., Whittaker, J. W., Ruzgas, T. 2007. The use of single walled carbon nanotubes dispersed in a chitosan matrix for preparation of a galactose biosensor. Biosensors and Bioelectronics, 22(8), 1820-1824.
  • [24] Erden, P. E., Kaçar, C., Öztürk, F., Kılıç, E. 2015. Amperometric uric acid biosensor based on poly (vinylferrocene)-gelatin-carboxylated multiwalled carbon nanotube modified glassy carbon electrode. Talanta, 134, 488-495.
  • [25] Periasamy, A. P., Chang, Y. J., Chen, S. M. 2011. Amperometric glucose sensor based on glucose oxidase immobilized on gelatin-multiwalled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry, 80(2), 114-120.
  • [26] Zheng, W., Zheng, Y. F. 2007. Gelatin-functionalized carbon nanotubes for the bioelectrochemistry of hemoglobin. Electrochemistry Communications, 9, 1619-1623.
  • [27] Yang, N., Chen, X., Ren, T., Zhang, P., Yang, D. 2015. Carbon nanotube based biosensors. Sensors and Actuators B, 207, 690-715.
  • [28] Fu, J., Pang, Z., Yang, J., Huang, F., Cai, Y., Wei, Q. 2015. Fabrication of polyaniline/carboxymethyl cellulose/cellulose nanofibrous mats and their biosensing application. Applied Surface Science, 349, 35-42.
  • [29] Türkaslan, Ö., Kıralp Kayahan, S. and Toppare, L. 2009. A new amperometric cholestrol biosensor based on poly(3,4-ethylenedioxypyrrole). Sensor and Actuators B, 136, 484-488.
  • [30] Devi, R., Yadav, S., Pundir, C.S. 2012. Amperometric determination of xanthine in fish meat by zinc oxide nanoparticle/chitosan/multiwalled carbon nanotube/polyaniline composite film bound xanthine oxidase. Analyst, 13, 754-759.
  • [31] Devi, R., Batra, B., Lata, S., Yadav, S. and Pundir, C.S. 2013. A method for determinationof xanthine in meat by amperometric biosensor based on silver nanoparticles/cysteine modified Au electrode. Process Biochemistry, 48(2), 242-249.
  • [32] Liu, Y., Li, W., Wei, C., Lü, L. 2012. Preparation of a xanthine sensor based on the immobilization of xanthine oxidase on a chitosan modified electrode by cross-linking. Chinese Journal of Chemistry, 30, 1601-1604.
  • [33] Zou, L., Li, Y., Cao, S. and Ye, B. 2014. A new voltammetric sensor for sensitive and selective determination of xanthine based on DNA and polyaniline composite Langmuir–Blodgett film. Talanta, 129, 346-351.
  • [34] Amiri-Aref, M., Raoof, J.B. and Ojani, R. 2014. A highly sensitive electrochemical sensor for simultaneous voltammetric determination of noradrenaline, acetaminophen, xanthine and caffeine based on a flavonoid nanostructured modified glassy carbon electrode. Sensors and Actuators B, 192, 634-641.
  • [35] Liu, X., Ou, X., Lu, Q., Zhang, J., Chen, S., Wei, S. 2014. Electrochemical sensor based on overoxidized dopamine polymer and 3,4,9,10-perylenetetracarboxylic acid for simultaneous determination of ascorbic acid, dopamine, uric acid, xanthine and hypoxanthine. RSC Advances, 4, 42632-42637.
  • [36] Arslan, F., Yaşar, A., Kılıç, E. 2006. An Amperometric Biosensor for Xanthine Determination Prepared from Xanthine Oxidase Immobilized in Polypyrrole Film. Artificial Cells, Blood Substitutes, and Biotechnology, 34(1), 113-128.
  • [37] Devi, R., Thakur, M., Pundir, C.S. 2011. Construction and application of an amperometric xanthine biosensor based on zinc oxide nanoparticles‒polypyrrole composite film. Biosensors and Bioelectronics, 26(8), 3420-3426.
Year 2018, Volume: 22 Issue: 2, 832 - 839, 15.08.2018

Abstract

References

  • [1] Pundir, C. S., Devi, R. 2014. Biosensing methods for xanthine determination: A review. Enzyme and Microbial Technology, 57, 55-62.
  • [2] Thandavan, K., Gandhi, S., Sethuraman, S., Rayappan, J. B. B., Krishnan, U. M. 2013. Development of electrochemical biosensor with nano-interface for xanthine sensing–A novel approach for fish freshness estimation. Food Chemistry, 139(1), 963-969.
  • [3] Pagliarussi, R. S., Freitas, L. A. P., Bastos, J. K. 2002. A quantitative method for the analysis of xanthine alkaloids in Paullinia cupana (guarana) by capillary column gas chromatography. Journal of Separation Science, 25, 371-374.
  • [4] Cooper, N., Khosravan, R., Erdmann, C., Fiene, J., Lee, J. W. 2006. Quantification of uric acid, xanthine and hypoxanthine in human serum by HPLC for pharmacodynamic studies. Journal of Chromatography B, 837, 1-10.
  • [5] Hlavay, J., Haemmerli, S., Gailbult, G. 1994. Fibre-optic biosensor for hypoxanthine and xanthine based on a chemiluminescence reaction. Biosensors and Bioelectronics, 9, 189-195.
  • [6] Amigo, J. M., Coello, J., Maspoch, S. 2005. Three-way partial least-squares regression for the simultaneous kinetic-enzymatic determination of xanthine and hypoxanthine in human urine. Analytical and Bioanalytical Chemistry, 382, 1380-1388.
  • [7] Dinçkaya, E. 1999. Enzim sensörleri, ss 81-142. Telefoncu, A., ed. 1999. Biyosensörler, Ege Ün. Yayınları, İzmir, 280s.
  • [8] Zhu, C., Yang, G., Li, H., Du, D., Lin, Y. 2014. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Analytical Chemistry, 87(1), 230-249.
  • [9] Erden, P. E., Pekyardımcı, Ş., Kılıç, E. 2012. Amperometric enzyme electrodes for xanthine determination with different mediators. Acta Chimica Slovenica, 59, 824-832.
  • [10] Devi, R., Yadav, S., Nehra, R., Yadav, S., Pundir, C. S. 2013. Electrochemical biosensor based on gold coated iron nanoparticles/chitosan composite bound xanthine oxidase for detection of xanthine in fish meat. Journal of Food Engineering, 115(2), 207-214.
  • [11] Dervisevic, M., Custiuc, E., Çevik, E., Şenel, M. 2015. Construction of novel xanthine biosensor by using polymeric mediator/MWCNT nanocomposite layer for fish freshness detection. Food Chemistry, 181, 277-283.
  • [12] Saadaoui, M., Sánchez, A., Díez, P., Raouafi, N., Pingarrón, J. M., Villalonga, R. 2016. Amperometric xanthine biosensors using glassy carbon electrodes modified with electrografted porous silica nanomaterials loaded with xanthine oxidase. Microchimica Acta, 183(6), 2023-2030.
  • [13] Dalkiran, B., Kacar, C., Erden, P. E., Kilic, E. 2014. Amperometric xanthine biosensors based on chitosan-Co3O4-multiwall carbon nanotube modified glassy carbon electrode. Sensors and Actuators B: Chemical, 200, 83-91.
  • [14] Dalkıran, B., Erden, P. E., Kılıç, E. 2017. Amperometric biosensors based on carboxylated multiwalled carbon nanotubes-metal oxide nanoparticles-7, 7, 8, 8-tetracyanoquinodimethane composite for the determination of xanthine. Talanta, 167, 286-295.
  • [15] Çevik, S. 2016. Xanthine biosensor based on XO/AuNP/PtNP/MWCNT hybrid nanocomposite modified GCPE. Biotechnology and Bioprocess Engineering, 21(2), 314-320.
  • [16] Devi, R., Yadav, S., Pundir, C. S. 2012. Amperometric determination of xanthine in fish meat by zinc oxide nanoparticle/chitosan/multiwalled carbon nanotube/polyaniline composite film bound xanthine oxidase. Analyst, 137(3), 754-759.
  • [17] Anik, Ü., Çevik, S. 2009. Double-walled carbon nanotube based carbon paste electrode as xanthine biosensor. Microchimica Acta, 166(3-4), 209-213.
  • [18] Kaçar, C., Dalkıran, B., Erden, P. E., Kılıç, E. 2014. An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode. Applied Surface Science, 311, 139-146.
  • [19] Dalkıran, B., Erden, P. E., Kılıç, E. 2016. Electrochemical biosensing of galactose based on carbon materials: graphene versus multi-walled carbon nanotubes. Analytical and Bioanalytical Chemistry, 408(16), 4329-4339.
  • [20] Hammond, J. L., Formisano, N., Estrela, P., Carrara, S., Tkac, J. 2016. Electrochemical biosensors and nanobiosensors. Essays in Biochemistry, 60, 69-80.
  • [21] Zhu, N., Gao, H., Xu, Q., Lin, Y., Su, L., Mao, L. 2010. Sensitive impedimetric DNA biosensor with poly (amidoamine) dendrimer covalently attached onto carbon nanotube electronic transducers as the tether for surface confinement of probe DNA. Biosensors and Bioelectronics, 25(6), 1498-1503.
  • [22] Wang, J., Musameh, M., Lin, Y. 2003. Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. Journal of the American Chemical Society, 125(9), 2408-2409.
  • [23] Tkac, J., Whittaker, J. W., Ruzgas, T. 2007. The use of single walled carbon nanotubes dispersed in a chitosan matrix for preparation of a galactose biosensor. Biosensors and Bioelectronics, 22(8), 1820-1824.
  • [24] Erden, P. E., Kaçar, C., Öztürk, F., Kılıç, E. 2015. Amperometric uric acid biosensor based on poly (vinylferrocene)-gelatin-carboxylated multiwalled carbon nanotube modified glassy carbon electrode. Talanta, 134, 488-495.
  • [25] Periasamy, A. P., Chang, Y. J., Chen, S. M. 2011. Amperometric glucose sensor based on glucose oxidase immobilized on gelatin-multiwalled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry, 80(2), 114-120.
  • [26] Zheng, W., Zheng, Y. F. 2007. Gelatin-functionalized carbon nanotubes for the bioelectrochemistry of hemoglobin. Electrochemistry Communications, 9, 1619-1623.
  • [27] Yang, N., Chen, X., Ren, T., Zhang, P., Yang, D. 2015. Carbon nanotube based biosensors. Sensors and Actuators B, 207, 690-715.
  • [28] Fu, J., Pang, Z., Yang, J., Huang, F., Cai, Y., Wei, Q. 2015. Fabrication of polyaniline/carboxymethyl cellulose/cellulose nanofibrous mats and their biosensing application. Applied Surface Science, 349, 35-42.
  • [29] Türkaslan, Ö., Kıralp Kayahan, S. and Toppare, L. 2009. A new amperometric cholestrol biosensor based on poly(3,4-ethylenedioxypyrrole). Sensor and Actuators B, 136, 484-488.
  • [30] Devi, R., Yadav, S., Pundir, C.S. 2012. Amperometric determination of xanthine in fish meat by zinc oxide nanoparticle/chitosan/multiwalled carbon nanotube/polyaniline composite film bound xanthine oxidase. Analyst, 13, 754-759.
  • [31] Devi, R., Batra, B., Lata, S., Yadav, S. and Pundir, C.S. 2013. A method for determinationof xanthine in meat by amperometric biosensor based on silver nanoparticles/cysteine modified Au electrode. Process Biochemistry, 48(2), 242-249.
  • [32] Liu, Y., Li, W., Wei, C., Lü, L. 2012. Preparation of a xanthine sensor based on the immobilization of xanthine oxidase on a chitosan modified electrode by cross-linking. Chinese Journal of Chemistry, 30, 1601-1604.
  • [33] Zou, L., Li, Y., Cao, S. and Ye, B. 2014. A new voltammetric sensor for sensitive and selective determination of xanthine based on DNA and polyaniline composite Langmuir–Blodgett film. Talanta, 129, 346-351.
  • [34] Amiri-Aref, M., Raoof, J.B. and Ojani, R. 2014. A highly sensitive electrochemical sensor for simultaneous voltammetric determination of noradrenaline, acetaminophen, xanthine and caffeine based on a flavonoid nanostructured modified glassy carbon electrode. Sensors and Actuators B, 192, 634-641.
  • [35] Liu, X., Ou, X., Lu, Q., Zhang, J., Chen, S., Wei, S. 2014. Electrochemical sensor based on overoxidized dopamine polymer and 3,4,9,10-perylenetetracarboxylic acid for simultaneous determination of ascorbic acid, dopamine, uric acid, xanthine and hypoxanthine. RSC Advances, 4, 42632-42637.
  • [36] Arslan, F., Yaşar, A., Kılıç, E. 2006. An Amperometric Biosensor for Xanthine Determination Prepared from Xanthine Oxidase Immobilized in Polypyrrole Film. Artificial Cells, Blood Substitutes, and Biotechnology, 34(1), 113-128.
  • [37] Devi, R., Thakur, M., Pundir, C.S. 2011. Construction and application of an amperometric xanthine biosensor based on zinc oxide nanoparticles‒polypyrrole composite film. Biosensors and Bioelectronics, 26(8), 3420-3426.
There are 37 citations in total.

Details

Journal Section Articles
Authors

Ceren Kaçar

Berna Dalkıran

Pınar Esra Erden

Esma Kılıç

Publication Date August 15, 2018
Published in Issue Year 2018 Volume: 22 Issue: 2

Cite

APA Kaçar, C., Dalkıran, B., Erden, P. E., Kılıç, E. (2018). Ksantin Biyosensörlerin Performansına Çeşitli Çok Duvarlı Karbon Nanotüplerin Etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 832-839. https://doi.org/10.19113/sdufbed.87071
AMA Kaçar C, Dalkıran B, Erden PE, Kılıç E. Ksantin Biyosensörlerin Performansına Çeşitli Çok Duvarlı Karbon Nanotüplerin Etkisi. J. Nat. Appl. Sci. August 2018;22(2):832-839. doi:10.19113/sdufbed.87071
Chicago Kaçar, Ceren, Berna Dalkıran, Pınar Esra Erden, and Esma Kılıç. “Ksantin Biyosensörlerin Performansına Çeşitli Çok Duvarlı Karbon Nanotüplerin Etkisi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no. 2 (August 2018): 832-39. https://doi.org/10.19113/sdufbed.87071.
EndNote Kaçar C, Dalkıran B, Erden PE, Kılıç E (August 1, 2018) Ksantin Biyosensörlerin Performansına Çeşitli Çok Duvarlı Karbon Nanotüplerin Etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 2 832–839.
IEEE C. Kaçar, B. Dalkıran, P. E. Erden, and E. Kılıç, “Ksantin Biyosensörlerin Performansına Çeşitli Çok Duvarlı Karbon Nanotüplerin Etkisi”, J. Nat. Appl. Sci., vol. 22, no. 2, pp. 832–839, 2018, doi: 10.19113/sdufbed.87071.
ISNAD Kaçar, Ceren et al. “Ksantin Biyosensörlerin Performansına Çeşitli Çok Duvarlı Karbon Nanotüplerin Etkisi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/2 (August 2018), 832-839. https://doi.org/10.19113/sdufbed.87071.
JAMA Kaçar C, Dalkıran B, Erden PE, Kılıç E. Ksantin Biyosensörlerin Performansına Çeşitli Çok Duvarlı Karbon Nanotüplerin Etkisi. J. Nat. Appl. Sci. 2018;22:832–839.
MLA Kaçar, Ceren et al. “Ksantin Biyosensörlerin Performansına Çeşitli Çok Duvarlı Karbon Nanotüplerin Etkisi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, no. 2, 2018, pp. 832-9, doi:10.19113/sdufbed.87071.
Vancouver Kaçar C, Dalkıran B, Erden PE, Kılıç E. Ksantin Biyosensörlerin Performansına Çeşitli Çok Duvarlı Karbon Nanotüplerin Etkisi. J. Nat. Appl. Sci. 2018;22(2):832-9.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.