BibTex RIS Cite

Makine Öğrenmesi Algoritmalarıyla Android Kötücül Yazılım Uygulamalarının Tespiti

Year 2018, Volume: 22 Issue: 2, 1087 - 1094, 15.08.2018
https://doi.org/10.19113/sdufbed.20066

Abstract

Son yıllarda akıllı mobil cihazlar hayatımızı ciddi anlamda kolaylaştırmış ve hız kazandırmıştır. Android işletim sistemi (İS) bu cihazlar arasında en yüksek kullanım oranına sahiptir. Yaygın kullanım, yetersiz güvenlik mekanizmaları ve kullanıcıların bilinç düzeyi bu İS’ni saldırganların hedefi haline getirmektedir. Android İS’nin güvenlik mekanizmasını temelini izin tabanlı güvenlik modeli oluşturmaktadır. Uygulamalar, kullanıcı tarafından verilen izinlere bağlı olarak işlevlerini yerine getirebilmektedir. Ancak kullanıcı farkındalığı, talep edilen izinlerin suiistimale açık olup olmadığı hususunda yeterli seviyede değildir. Bu sebeple bu uygulamalarda kötücül içerik tespiti için ek yöntemlere ihtiyaç duyulmaktadır. Bu çalışmada, kötücül yazılım uygulamalarının tespiti amacıyla makine öğrenmesi algoritmaları kullanılarak izin tabanlı bir yöntem önerilmiştir. Önerilen yöntem destek vektör makinesi, rastgele orman, Naïve Bayes ve K en yakın komşu makine öğrenmesi algoritmalarıyla ayrı ayrı denenmiş ve başarımları kıyaslanmıştır. Rastgele orman algoritması %95,65 doğruluk oranıyla en yüksek başarımı sergilemiştir.

References

  • [1] Anonim, 2017. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021 White Paper. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html (Erişim Tarihi: 03.03.2017).
  • [2] Anonim, 2017. IDC Smartphone OS Market Share in 2017 Q1. http://www.idc.com/promo/smartphone-market-share/os (Erişim Tarihi: 11.05.2017).
  • [3] Anonim, 2017. Number of available applications in the Google Play Store from December 2009 to June 2017. https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/ (Erişim Tarihi: 06.07.2017).
  • [4] Anonim, 2017. Sensor Tower Store Intelligence Q4 2016 Data Digest. https://s3.amazonaws.com/sensortower-itunes/Quarterly+Reports/Sensor-Tower-Q4-2016-Data-Digest.pdf?src=blog (Erişim Tarihi: 18.03.2017).
  • [5] Snell, B. 2017. Mobile Threat Report What’s on the Horizon for 2016. https://www.infopoint-security.de/medien/rp-mobile-threat-report-20161.pdf (Erişim Tarihi: 26.03.2017).
  • [6] Anonim, 2016. G Data Mobile Malware Report – Threat report: H1/2016. https://file.gdatasoftware.com/web/en/documents/whitepaper/G_DATA_Mobile_Malware_Report_H1_2016_EN.pdf (Erişim Tarihi: 01.04.2017).
  • [7] Felt, AP., Ha, E., Egelman, S., Haney, A., Chin, E., Wagner, D. 2012. Android permissions: user attention comprehension, and behavior. In: Proceedings of the eighth symposium on usable privacy and security e SOUPS '12, (2012), 3.1-3.14.
  • [8] Anonim, 2017. Requesting Permissions. https://developer.android.com/guide/topics/permissions/requesting.html (Erişim Tarihi: 06.05.2017).
  • [9] Kiraz, Ö., Doğru, İ.A. 2017. Android Malware Detection Systems Review. Düzce Univ. Journal of Science & Technology, Vol. 5 (1) (2017), 281-298.
  • [10] Vapnik V.N. 2000. The Nature of Static Learing Theory. Springer, 314s.
  • [11] Breiman L. 2001. Random Forests. Statistics Department University of California Berkeley, (2001), 1- 33.
  • [12] Hanson R., Stutz J. 1991. Cheeseman P. Bayesian Classification Theory. NASA Ames Research Center Artificial Intelligence Research Branch. (1991), 1-9.
  • [13] Fix E., Hodges J.L. 1952. Discriminatory analysis: Nonparametric discrimination: Small sample performance. Technical Report Project 21-49-004. Report Number 11, (1952), 1-20.
  • [14] Liu, X., Liu, J. 2014. A Two-layered Permission-based Android Malware Detection Scheme. 2nd IEEE International Conference on Mobile Cloud Computing, Services, and Engineering, Oxford, (2014), 142-148.
  • [15] Liang, S., Du, X. 2014. Permission-Combination-based Scheme for Android Mobile Malware Detection. IEEE International Conference on Communications (ICC), Sydney, NSW, 2301 – 2306.
  • [16] Xiaoyan, Z., Juan, F., Xiujuan, W., 2014. Android malware detection based on permissions. International Conference on Information and Communications Technologies (ICT 2014), Nanjing, China, 1-5.
  • [17] Liu, W., 2013. Mutiple classifier system based android malware detection. International Conference on Machine Learning and Cybernetics (ICMLC), Tianjin, (2013), 57-62.
  • [18] Wei Wang, Yuanyuan Li, Xing Wang, Jiqiang Liu, Xiangliang Zhang, 2017. Detecting Android Malicious Apps and Categorizing Benign Apps with Ensemble of Classifiers. Future Generation Computer Systems, (2017).
  • [19] Yuan, Z., Lu, Y., Xue, Y. 2016. DroidDetector: Android Malware Characterization and Detection Using Deep Learning. Tsinghua Sci. Tech. 21, (2016), 114-123.
  • [20] Anonim, 2014. DroidDetector: A deep learning based Android malware detection engine. http://analysis.droid-sec.com (Erişim Tarihi: 21.04.2017).
  • [21] Kurniawan, H., Rosmansyah, Y., DabarsyahAndroid, B. 2015. Android anomaly detection system using machine learning classification. In Electrical Engineering and Informatics (ICEEI), 2015 International Conference on, (2015), 288–293.
  • [22] Lindorfer, M., Neugschwandtner, M. and Platzer, C. 2015. Marvin: Efficient and comprehensive mobile app classification through static and dynamic analysis. In Computer Software and Applications Conference (COMPSAC), 2015 IEEE 39th Annual, volume 2, (2015), 422–433.
  • [23] Weichselbaum, L., Neugschwandtner, M., Lindorfer, M., Fratantonio, Y., Van der Veen, Y., Platzer, C. 2014. Andrubis: Android malware under the magnifying glass. Vienna University of Technology, (2014), Tech. Rep. TR-ISECLAB-0414-001.
  • [24] Botha, R.A., Furnell, S.M., Clarke, N.L. 2009. Fromdesktop to mobile: Examining the security experience. Computer & Security 28, (2009), 130–137.
  • [25] Galli, Enrico. Reverse Engineering Android Applications. Diss. University of Georgia, 2012.
  • [26] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: an update. ACM SIGKDD explorations newsletter, 11(1), 10-18.
Year 2018, Volume: 22 Issue: 2, 1087 - 1094, 15.08.2018
https://doi.org/10.19113/sdufbed.20066

Abstract

References

  • [1] Anonim, 2017. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021 White Paper. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html (Erişim Tarihi: 03.03.2017).
  • [2] Anonim, 2017. IDC Smartphone OS Market Share in 2017 Q1. http://www.idc.com/promo/smartphone-market-share/os (Erişim Tarihi: 11.05.2017).
  • [3] Anonim, 2017. Number of available applications in the Google Play Store from December 2009 to June 2017. https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/ (Erişim Tarihi: 06.07.2017).
  • [4] Anonim, 2017. Sensor Tower Store Intelligence Q4 2016 Data Digest. https://s3.amazonaws.com/sensortower-itunes/Quarterly+Reports/Sensor-Tower-Q4-2016-Data-Digest.pdf?src=blog (Erişim Tarihi: 18.03.2017).
  • [5] Snell, B. 2017. Mobile Threat Report What’s on the Horizon for 2016. https://www.infopoint-security.de/medien/rp-mobile-threat-report-20161.pdf (Erişim Tarihi: 26.03.2017).
  • [6] Anonim, 2016. G Data Mobile Malware Report – Threat report: H1/2016. https://file.gdatasoftware.com/web/en/documents/whitepaper/G_DATA_Mobile_Malware_Report_H1_2016_EN.pdf (Erişim Tarihi: 01.04.2017).
  • [7] Felt, AP., Ha, E., Egelman, S., Haney, A., Chin, E., Wagner, D. 2012. Android permissions: user attention comprehension, and behavior. In: Proceedings of the eighth symposium on usable privacy and security e SOUPS '12, (2012), 3.1-3.14.
  • [8] Anonim, 2017. Requesting Permissions. https://developer.android.com/guide/topics/permissions/requesting.html (Erişim Tarihi: 06.05.2017).
  • [9] Kiraz, Ö., Doğru, İ.A. 2017. Android Malware Detection Systems Review. Düzce Univ. Journal of Science & Technology, Vol. 5 (1) (2017), 281-298.
  • [10] Vapnik V.N. 2000. The Nature of Static Learing Theory. Springer, 314s.
  • [11] Breiman L. 2001. Random Forests. Statistics Department University of California Berkeley, (2001), 1- 33.
  • [12] Hanson R., Stutz J. 1991. Cheeseman P. Bayesian Classification Theory. NASA Ames Research Center Artificial Intelligence Research Branch. (1991), 1-9.
  • [13] Fix E., Hodges J.L. 1952. Discriminatory analysis: Nonparametric discrimination: Small sample performance. Technical Report Project 21-49-004. Report Number 11, (1952), 1-20.
  • [14] Liu, X., Liu, J. 2014. A Two-layered Permission-based Android Malware Detection Scheme. 2nd IEEE International Conference on Mobile Cloud Computing, Services, and Engineering, Oxford, (2014), 142-148.
  • [15] Liang, S., Du, X. 2014. Permission-Combination-based Scheme for Android Mobile Malware Detection. IEEE International Conference on Communications (ICC), Sydney, NSW, 2301 – 2306.
  • [16] Xiaoyan, Z., Juan, F., Xiujuan, W., 2014. Android malware detection based on permissions. International Conference on Information and Communications Technologies (ICT 2014), Nanjing, China, 1-5.
  • [17] Liu, W., 2013. Mutiple classifier system based android malware detection. International Conference on Machine Learning and Cybernetics (ICMLC), Tianjin, (2013), 57-62.
  • [18] Wei Wang, Yuanyuan Li, Xing Wang, Jiqiang Liu, Xiangliang Zhang, 2017. Detecting Android Malicious Apps and Categorizing Benign Apps with Ensemble of Classifiers. Future Generation Computer Systems, (2017).
  • [19] Yuan, Z., Lu, Y., Xue, Y. 2016. DroidDetector: Android Malware Characterization and Detection Using Deep Learning. Tsinghua Sci. Tech. 21, (2016), 114-123.
  • [20] Anonim, 2014. DroidDetector: A deep learning based Android malware detection engine. http://analysis.droid-sec.com (Erişim Tarihi: 21.04.2017).
  • [21] Kurniawan, H., Rosmansyah, Y., DabarsyahAndroid, B. 2015. Android anomaly detection system using machine learning classification. In Electrical Engineering and Informatics (ICEEI), 2015 International Conference on, (2015), 288–293.
  • [22] Lindorfer, M., Neugschwandtner, M. and Platzer, C. 2015. Marvin: Efficient and comprehensive mobile app classification through static and dynamic analysis. In Computer Software and Applications Conference (COMPSAC), 2015 IEEE 39th Annual, volume 2, (2015), 422–433.
  • [23] Weichselbaum, L., Neugschwandtner, M., Lindorfer, M., Fratantonio, Y., Van der Veen, Y., Platzer, C. 2014. Andrubis: Android malware under the magnifying glass. Vienna University of Technology, (2014), Tech. Rep. TR-ISECLAB-0414-001.
  • [24] Botha, R.A., Furnell, S.M., Clarke, N.L. 2009. Fromdesktop to mobile: Examining the security experience. Computer & Security 28, (2009), 130–137.
  • [25] Galli, Enrico. Reverse Engineering Android Applications. Diss. University of Georgia, 2012.
  • [26] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: an update. ACM SIGKDD explorations newsletter, 11(1), 10-18.
There are 26 citations in total.

Details

Journal Section Articles
Authors

Abdurahman Aydın This is me

İbrahim Alper Doğru

Murat Dörterler

Publication Date August 15, 2018
Published in Issue Year 2018 Volume: 22 Issue: 2

Cite

APA Aydın, A., Doğru, İ. A., & Dörterler, M. (2018). Makine Öğrenmesi Algoritmalarıyla Android Kötücül Yazılım Uygulamalarının Tespiti. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 1087-1094. https://doi.org/10.19113/sdufbed.20066
AMA Aydın A, Doğru İA, Dörterler M. Makine Öğrenmesi Algoritmalarıyla Android Kötücül Yazılım Uygulamalarının Tespiti. J. Nat. Appl. Sci. August 2018;22(2):1087-1094. doi:10.19113/sdufbed.20066
Chicago Aydın, Abdurahman, İbrahim Alper Doğru, and Murat Dörterler. “Makine Öğrenmesi Algoritmalarıyla Android Kötücül Yazılım Uygulamalarının Tespiti”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no. 2 (August 2018): 1087-94. https://doi.org/10.19113/sdufbed.20066.
EndNote Aydın A, Doğru İA, Dörterler M (August 1, 2018) Makine Öğrenmesi Algoritmalarıyla Android Kötücül Yazılım Uygulamalarının Tespiti. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 2 1087–1094.
IEEE A. Aydın, İ. A. Doğru, and M. Dörterler, “Makine Öğrenmesi Algoritmalarıyla Android Kötücül Yazılım Uygulamalarının Tespiti”, J. Nat. Appl. Sci., vol. 22, no. 2, pp. 1087–1094, 2018, doi: 10.19113/sdufbed.20066.
ISNAD Aydın, Abdurahman et al. “Makine Öğrenmesi Algoritmalarıyla Android Kötücül Yazılım Uygulamalarının Tespiti”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/2 (August 2018), 1087-1094. https://doi.org/10.19113/sdufbed.20066.
JAMA Aydın A, Doğru İA, Dörterler M. Makine Öğrenmesi Algoritmalarıyla Android Kötücül Yazılım Uygulamalarının Tespiti. J. Nat. Appl. Sci. 2018;22:1087–1094.
MLA Aydın, Abdurahman et al. “Makine Öğrenmesi Algoritmalarıyla Android Kötücül Yazılım Uygulamalarının Tespiti”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, no. 2, 2018, pp. 1087-94, doi:10.19113/sdufbed.20066.
Vancouver Aydın A, Doğru İA, Dörterler M. Makine Öğrenmesi Algoritmalarıyla Android Kötücül Yazılım Uygulamalarının Tespiti. J. Nat. Appl. Sci. 2018;22(2):1087-94.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.