In this study, the angle of twist of axially layered functionally graded circular hollow shafts subjected to a twisting torque at the free end was analyzed under clamped-free boundary conditions using finite element software ANSYS. The hollow shafts were made using three layers including various mixtures of ceramic and metal materials. Layer locations on the shafts were performed using L9 orthogonal array based on Taguchi Method. The layer combination with optimum levels was obtained using analysis of the signal-to-noise (S/N) ratio. Significant layers and their percent effects on the angles of twist were analyzed using analysis of variance (ANOVA). According to results obtained, the increase of the ceramic material in layers leads to the decrease of the angle of twist of the beams. The most meaningful layers on response were obtained as first layer with 52.83 % effect ratio, second layer with 29.41% effect ratio, and third layer with 17.76 % effect ratio.
Angle of twist Functionally graded materials (FGMs); Circular hollow shaft; Finite Element Method
Journal Section | Articles |
---|---|
Authors | |
Publication Date | October 5, 2018 |
Published in Issue | Year 2018 Volume: 22 Issue: Special |
e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688
All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.