Research Article
BibTex RIS Cite

Latis Modüllerindeki Pür Elemanlar ve Asal Elemanların Dual Kavramları

Year 2020, Volume: 24 Issue: 1, 226 - 229, 20.04.2020
https://doi.org/10.19113/sdufenbed.510435

Abstract

Bu makale pür elemanlar ve asal elemanların dual kavramları (yani ikinci elemanları) ile ilgilenir. Bunun için, ikinci elemanı ve eşasal elemanını tanıtır. Daha sonra ikinci eleman kavramı ile eşasal eleman kavramlarının denk olduğu elde edilir. Ayrıca, bu çalışma bize eşçarpımsal latis modüllerinin bir karakterizasyonunu verir. Son olarak, pür elemanları tanımlar ve pür, eşgüçlü ve çarpım elemanlar arasındaki ilişkiyi elde eder.

References

  • [1] Ansari-Toroghy, H. and Farshadifar, F. 2007. The dual notion of multiplication module. Taiwanese Journal of Math., 11(4)(2007), 1189-1201.
  • [2] Ansari-Toroghy, H. and Farshadifar, F. 2008. On comultiplication modules. Korean Ann. Math. 25(2008), 57-66.
  • [3] Ansari-Toroghy, H. and Farshadifar, F. 2011. On Multiplication and comultiplication modules. Acta Mathematica Scientia, 31B(2)(2011), 694-700.
  • [4] Ansari-Toroghy, H. and Farshadifar, F. 2012. On the dual notion of prime submodules. Algebras Colloquium, 19(2012), (Spec 1), 1109-1116.
  • [5] Callialp, F. and Tekir, U. 2011. Multiplication lattice modules. Iranian Journal of Science & Technology, 4 (2011), 309-313.
  • [6] Callialp, F., Tekir, U. and Aslankarayigit, E. 2014. On multiplication lattice modules. Hacettepe Journal of Mathematics and Statistics, 43(4)(2014), 571-579.
  • [7] Callialp, F., Tekir, U. and Ulucak, G. 2015. Comultiplication lattice modules. Iranian Journal of Science and Technology, 39A2(2015), 213-220.
  • [8] M. M., Ali and Khalaf, R. I. 2010. Dual notions of prime modules. Ibn al-Haitham Journal for Pure and Appl. Sci., 23(2010), 226-237.
  • [9] Ali, M. M. and Smith, D. J. 2002. Projective, flat and multiplication modules. New Zeland Journal of Math., 31(2002), 115-125.
  • [10] Ali, M. M. and Smith, D. J. 2004. Pure submodules of multiplication modules. Beitrage zur Algebra and Geometrie, 45(1)(2004), 61-74.
  • [11] Smith, P. F. 1988. Some remarks on multiplication modules. Arch. der Math., 50(1988), 213-235.

Pure Elements and Dual Notions of Prime Elements in Lattice Modules

Year 2020, Volume: 24 Issue: 1, 226 - 229, 20.04.2020
https://doi.org/10.19113/sdufenbed.510435

Abstract

This paper deals with the pure elements and the dual notions of prime elements (that is, second elements). For this, it introduces the definitions of second element and coprime element. Then it is shown that the concepts of the second element and coprime element are equivalent. Moreover, this study gives us a characterization of comultiplication modules. Finally, it defines pure elements and obtains the relation among pure, idempotent and multiplication elements.

References

  • [1] Ansari-Toroghy, H. and Farshadifar, F. 2007. The dual notion of multiplication module. Taiwanese Journal of Math., 11(4)(2007), 1189-1201.
  • [2] Ansari-Toroghy, H. and Farshadifar, F. 2008. On comultiplication modules. Korean Ann. Math. 25(2008), 57-66.
  • [3] Ansari-Toroghy, H. and Farshadifar, F. 2011. On Multiplication and comultiplication modules. Acta Mathematica Scientia, 31B(2)(2011), 694-700.
  • [4] Ansari-Toroghy, H. and Farshadifar, F. 2012. On the dual notion of prime submodules. Algebras Colloquium, 19(2012), (Spec 1), 1109-1116.
  • [5] Callialp, F. and Tekir, U. 2011. Multiplication lattice modules. Iranian Journal of Science & Technology, 4 (2011), 309-313.
  • [6] Callialp, F., Tekir, U. and Aslankarayigit, E. 2014. On multiplication lattice modules. Hacettepe Journal of Mathematics and Statistics, 43(4)(2014), 571-579.
  • [7] Callialp, F., Tekir, U. and Ulucak, G. 2015. Comultiplication lattice modules. Iranian Journal of Science and Technology, 39A2(2015), 213-220.
  • [8] M. M., Ali and Khalaf, R. I. 2010. Dual notions of prime modules. Ibn al-Haitham Journal for Pure and Appl. Sci., 23(2010), 226-237.
  • [9] Ali, M. M. and Smith, D. J. 2002. Projective, flat and multiplication modules. New Zeland Journal of Math., 31(2002), 115-125.
  • [10] Ali, M. M. and Smith, D. J. 2004. Pure submodules of multiplication modules. Beitrage zur Algebra and Geometrie, 45(1)(2004), 61-74.
  • [11] Smith, P. F. 1988. Some remarks on multiplication modules. Arch. der Math., 50(1988), 213-235.
There are 11 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Emel Aslankarayiğit Uğurlu

Publication Date April 20, 2020
Published in Issue Year 2020 Volume: 24 Issue: 1

Cite

APA Aslankarayiğit Uğurlu, E. (2020). Pure Elements and Dual Notions of Prime Elements in Lattice Modules. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(1), 226-229. https://doi.org/10.19113/sdufenbed.510435
AMA Aslankarayiğit Uğurlu E. Pure Elements and Dual Notions of Prime Elements in Lattice Modules. J. Nat. Appl. Sci. April 2020;24(1):226-229. doi:10.19113/sdufenbed.510435
Chicago Aslankarayiğit Uğurlu, Emel. “Pure Elements and Dual Notions of Prime Elements in Lattice Modules”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, no. 1 (April 2020): 226-29. https://doi.org/10.19113/sdufenbed.510435.
EndNote Aslankarayiğit Uğurlu E (April 1, 2020) Pure Elements and Dual Notions of Prime Elements in Lattice Modules. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 1 226–229.
IEEE E. Aslankarayiğit Uğurlu, “Pure Elements and Dual Notions of Prime Elements in Lattice Modules”, J. Nat. Appl. Sci., vol. 24, no. 1, pp. 226–229, 2020, doi: 10.19113/sdufenbed.510435.
ISNAD Aslankarayiğit Uğurlu, Emel. “Pure Elements and Dual Notions of Prime Elements in Lattice Modules”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24/1 (April 2020), 226-229. https://doi.org/10.19113/sdufenbed.510435.
JAMA Aslankarayiğit Uğurlu E. Pure Elements and Dual Notions of Prime Elements in Lattice Modules. J. Nat. Appl. Sci. 2020;24:226–229.
MLA Aslankarayiğit Uğurlu, Emel. “Pure Elements and Dual Notions of Prime Elements in Lattice Modules”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 24, no. 1, 2020, pp. 226-9, doi:10.19113/sdufenbed.510435.
Vancouver Aslankarayiğit Uğurlu E. Pure Elements and Dual Notions of Prime Elements in Lattice Modules. J. Nat. Appl. Sci. 2020;24(1):226-9.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.