Research Article
BibTex RIS Cite

Parameters Affecting the Sound Absorption Performance of Luffa Cylindrica Fibers-Epoxy Composite

Year 2020, Volume: 24 Issue: 1, 201 - 208, 20.04.2020
https://doi.org/10.19113/sdufenbed.681607

Abstract

There are appropriate sound level ranges determined by regulations for the intended use of each place. In the room acoustics, finishing material’s sound absorption coefficients are used to calculate the reverberation time. Materials such as glass wool, which are widely used in site, are harmful for human health, especially during application. For this reason, as in many fields, the search for natural materials in sound absorption materials has become more important especially in recent years. In this study, it is aimed to produce an alternative sound absorbing material that is not harmful to human health with composites that will be produced by using a natural plant fiber named Luffa Cylndrica. In this context, using the Luffa Cylindrica fibers with epoxy binder, composite material is produced and the sound absorption coefficients of the samples are determined by impedance tube method. Also, the effect of material thickness and fiber ratio parameters on sound absorption performance are examined. The results are presented in graphs and and compared to eachother. The results showed that the material thickness and fiber ratio had an effect on sound absorption performance.

References

  • [1] Kuttruff, H. 2009. Room Acoustics. 5th edition. Spon Press, 2 Park Square, Milton Park, Abingdon Oxon, 389s.
  • [2] Resmi Gazete 2017. Binaların Gürültüye Karşı Korunması Hakkında Yönetmelik. https://www.resmigazete.gov.tr/eskiler/2017/05/20170531-7.htm (Erişim Tarihi:23.01.2020).
  • [3] Cox, T., d’Antonio, P. 2016. Acoustic Absorbers and Diffusers: Theory, Design and Application. 3rd edition. Crc Press, Boca Raton, 575s.
  • [4] Howard, D. M., Angus, J. 2017. Acoustics and Psychoacoustics. 5th edition. Routledge, New York, 518s.
  • [5] Cavanaugh, W. J., Tocci, G. C., Wilkes, J. A. 2010. Architectural Acoustics: Principles and Practice. 2nd edition. John Wiley & Sons, Hoboken New Jersey, 329s.
  • [6] Fuchs, V. H. 2013. Applied Acoustics: Concepts, Absorbers, and Silencers for Acoustical Comfort and Noise Control. Springer Heidelberg Dordrecht London New York, 607s.
  • [7] Nor, M. J. M., Jamaludin, N., Tamiri, F. M. 2004. A Preliminary Study of Sound Absorption Using Multi-Layer Coconut Coir Fibers. Electronic Journal Technical Acoustics, 3, 1-8.
  • [8] Zulkifh, R., Nor, M. M., Tahir, M. M., Ismail, A. R., Nuawi, M. Z. 2008. Acoustic Properties of Multi-Layer Coir Fibres Sound Absorption Panel. Journal of Applied Sciences, 8(20), 3709-3714.
  • [9] Biswal, M., Sahu, S. K., Asha, A. V. 2016. Vibration of Composite Cylindrical Shallow Shells Subjected to Hygrothermal Loading-Experimental and Numerical Results. Composites Part B: Engineering, 98, 108-119.
  • [10] Koizumi, T., Tsujiuchi, N., Adachi, A. 2002. The Development of Sound Absorbing Materials Using Natural Bamboo Fibers. WIT Transactions on The Built Environment, 59.
  • [11] Ersoy, S., Küçük, H. 2009. Investigation of Industrial Tea-Leaf-Fibre Waste Material for Its Sound Absorption Properties. Applied Acoustics, 70(1), 215-220.
  • [12] Ismail, L., Ghazali, M. I., Mahzan, S., Zaidi, A. M. A. 2010. Sound Absorption of Arenga Pinnata Natural Fiber. World Academy of Science, Engineering and Technology, 67, 804-806.
  • [13] Alba, J., del Rey, R., Ramis, J., Arenas, J. 2011. An Inverse Method to Obtain Porosity, Fibre Diameter and Density of Fibrous Sound Absorbing Materials. Archives of Acoustics, 36(3), 561-574.
  • [14] Veerakumar, A., Selvakumar, N. 2012. A Preliminary Investigation on Kapok Polypropylene Nonwoven Composite for Sound Absorption. Indian Journal of Fibre & Textile Research, 37, 385-388.
  • [15] Ekici, B., Kentli, A., Küçük, H. 2012. Improving Sound Absorption Property of Polyurethane Foams by Adding Tea-Leaf Fibers. Archives of Acoustics, 37(4), 515-520.
  • [16] Xiang, H. F., Wang, D., Liua, H. C. 2013. Investigation On Sound Absorption Properties of Kapok Fibers. Chinese Journal of Polymer Science, 31(3), 521-529.
  • [17] Ganesan, P., Karthik, T. 2016. Development Of Acoustic Nonwoven Materials from Kapok and Milkweed Fibres. The Journal of The Textile Institute, 107(4), 477-482.
  • [18] Thilagavathi, G., Neela Krishnan, S., Muthukumar, N., Krishnan, S. 2018. Investigations on Sound Absorption Properties of Luffa Fibrous Mats. Journal of Natural Fibers, 15(3), 445-451.
  • [19] Taban, E., Tajpoor, A., Faridan, M. Samaei, S.E., Beheshti, M.H., 2019. Acoustic Absorption Characterization and Prediction of Natural Coir Fibers. Acoustics Australia, 47(1), 67-77.
  • [20] Yuvaraj, L., Jeyanthi, S., Chinnapandi, M., Babu, L. 2019. Experimental and Finite Element Approach for Finding Sound Absorption Coefficient of Bio-Based Foam. Journal of Vibroengineering, 21(6), 1761-1771.
  • [21] Mohammad, M., Syukri, N. N., Nuawi, M. Z. 2019. Sound Properties Investigation of Date Palm Fiber. In Journal of Physics: Conference Series, IOP Publishing, 1150(1), 012003.
  • [22] Koruk, H., Genç, G. 2019. Acoustic and Mechanical Properties of Luffa Fiber-Reinforced Biocomposites. In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, Woodhead Publishing, 325-341.
  • [23] Taban, E., Khavanin, A., Ohadi, A., Putra, A., Jafari, A. J., Faridan, M., Soleimanian, A. 2019. Study on the Acoustic Characteristics of Natural Date Palm Fibres: Experimental and Theoretical Approaches. Building and Environment, 161, 106274.
  • [24] Ghali, L., Msahli, S., Zidi, M., Sakli, F. 2009. Effect of Pre-Treatment of Luffa Fibres on The Structural Properties. Materials letters, 63(1), 61-63.
  • [25] Contreras-Andrade, I., Rincón-Pardo, D., Guerrero-Fajardo, C. A., Parra-Santiago, J., Guerrero-Romero, E. 2014. Natural Composite Material from Steelwool or Luffa Cylindrica under Natural, Rigid and Flexible Resin. Journal of Chemistry and Chemical Engineering, 8, 906-917.
  • [26] Wang, R. M., Zheng, S. R., Zheng, Y. G. 2011. Polymer Matrix Composites and Technology. Elsevier-WP, Woodhead Publishing, Oxford 549s.
  • [27] Vidinlimen, G. T. 2010. Otomotiv endüstrisinde kullanılan gözenekli malzemelerin akustik özellikleri ve analizi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 149s, İstanbul

Su Kabağı Lifi (Luffa Cylindrica)-Epoksi Kompozitinde Sesin Yutulma Performansını Etkileyen Parametreler

Year 2020, Volume: 24 Issue: 1, 201 - 208, 20.04.2020
https://doi.org/10.19113/sdufenbed.681607

Abstract

Her mekanın kullanım amacına yönelik, yönetmeliklerle belirlenmiş uygun ses düzeyi aralıkları vardır. Mekan içerisinde, ses düzeyinin istenen seviyeye getirilmesi bitirme malzemelerinin ses yutma özellikleri kullanılarak sağlanmaktadır. Pratikte oldukça yaygın kullanılan cam yünü gibi malzemeler, özellikle uygulama sırasında insan sağlığı için zarar verici olmaktadır. Bu nedenle de pek çok alanda olduğu gibi, ses yutma malzemelerinde de doğal malzeme arayışı özellikle son yıllarda daha önemli hale gelmiştir. Bu çalışmada*, doğal bir bitki lifi olan Su Kabağı (LC) lifleri kullanılarak üretilecek kompozitler ile insan sağlığı için zararlı olmayan alternatif bir ses yutucu malzeme üretimi amaçlanmıştır. Bu kapsamda, su kabağı (LC) lifleri epoksi bağlayıcı ile kullanılarak kompozit malzeme üretilmiş ve empedans tüpü yöntemi ile numunelerin ses yutma katsayıları belirlenmiştir. Aynı zamanda, malzeme kalınlığı ve lif oranı parametrelerinin ses yutma performansı üzerindeki etkisi incelenmiştir. Elde edilen sonuçlar grafikler halinde sunulmuş ve karşılaştırmalar yapılmış ve sonuçlar, malzeme kalınlığı ve lif oranının ses yutma performansı üzerinde etkili olduğunu göstermiştir.

References

  • [1] Kuttruff, H. 2009. Room Acoustics. 5th edition. Spon Press, 2 Park Square, Milton Park, Abingdon Oxon, 389s.
  • [2] Resmi Gazete 2017. Binaların Gürültüye Karşı Korunması Hakkında Yönetmelik. https://www.resmigazete.gov.tr/eskiler/2017/05/20170531-7.htm (Erişim Tarihi:23.01.2020).
  • [3] Cox, T., d’Antonio, P. 2016. Acoustic Absorbers and Diffusers: Theory, Design and Application. 3rd edition. Crc Press, Boca Raton, 575s.
  • [4] Howard, D. M., Angus, J. 2017. Acoustics and Psychoacoustics. 5th edition. Routledge, New York, 518s.
  • [5] Cavanaugh, W. J., Tocci, G. C., Wilkes, J. A. 2010. Architectural Acoustics: Principles and Practice. 2nd edition. John Wiley & Sons, Hoboken New Jersey, 329s.
  • [6] Fuchs, V. H. 2013. Applied Acoustics: Concepts, Absorbers, and Silencers for Acoustical Comfort and Noise Control. Springer Heidelberg Dordrecht London New York, 607s.
  • [7] Nor, M. J. M., Jamaludin, N., Tamiri, F. M. 2004. A Preliminary Study of Sound Absorption Using Multi-Layer Coconut Coir Fibers. Electronic Journal Technical Acoustics, 3, 1-8.
  • [8] Zulkifh, R., Nor, M. M., Tahir, M. M., Ismail, A. R., Nuawi, M. Z. 2008. Acoustic Properties of Multi-Layer Coir Fibres Sound Absorption Panel. Journal of Applied Sciences, 8(20), 3709-3714.
  • [9] Biswal, M., Sahu, S. K., Asha, A. V. 2016. Vibration of Composite Cylindrical Shallow Shells Subjected to Hygrothermal Loading-Experimental and Numerical Results. Composites Part B: Engineering, 98, 108-119.
  • [10] Koizumi, T., Tsujiuchi, N., Adachi, A. 2002. The Development of Sound Absorbing Materials Using Natural Bamboo Fibers. WIT Transactions on The Built Environment, 59.
  • [11] Ersoy, S., Küçük, H. 2009. Investigation of Industrial Tea-Leaf-Fibre Waste Material for Its Sound Absorption Properties. Applied Acoustics, 70(1), 215-220.
  • [12] Ismail, L., Ghazali, M. I., Mahzan, S., Zaidi, A. M. A. 2010. Sound Absorption of Arenga Pinnata Natural Fiber. World Academy of Science, Engineering and Technology, 67, 804-806.
  • [13] Alba, J., del Rey, R., Ramis, J., Arenas, J. 2011. An Inverse Method to Obtain Porosity, Fibre Diameter and Density of Fibrous Sound Absorbing Materials. Archives of Acoustics, 36(3), 561-574.
  • [14] Veerakumar, A., Selvakumar, N. 2012. A Preliminary Investigation on Kapok Polypropylene Nonwoven Composite for Sound Absorption. Indian Journal of Fibre & Textile Research, 37, 385-388.
  • [15] Ekici, B., Kentli, A., Küçük, H. 2012. Improving Sound Absorption Property of Polyurethane Foams by Adding Tea-Leaf Fibers. Archives of Acoustics, 37(4), 515-520.
  • [16] Xiang, H. F., Wang, D., Liua, H. C. 2013. Investigation On Sound Absorption Properties of Kapok Fibers. Chinese Journal of Polymer Science, 31(3), 521-529.
  • [17] Ganesan, P., Karthik, T. 2016. Development Of Acoustic Nonwoven Materials from Kapok and Milkweed Fibres. The Journal of The Textile Institute, 107(4), 477-482.
  • [18] Thilagavathi, G., Neela Krishnan, S., Muthukumar, N., Krishnan, S. 2018. Investigations on Sound Absorption Properties of Luffa Fibrous Mats. Journal of Natural Fibers, 15(3), 445-451.
  • [19] Taban, E., Tajpoor, A., Faridan, M. Samaei, S.E., Beheshti, M.H., 2019. Acoustic Absorption Characterization and Prediction of Natural Coir Fibers. Acoustics Australia, 47(1), 67-77.
  • [20] Yuvaraj, L., Jeyanthi, S., Chinnapandi, M., Babu, L. 2019. Experimental and Finite Element Approach for Finding Sound Absorption Coefficient of Bio-Based Foam. Journal of Vibroengineering, 21(6), 1761-1771.
  • [21] Mohammad, M., Syukri, N. N., Nuawi, M. Z. 2019. Sound Properties Investigation of Date Palm Fiber. In Journal of Physics: Conference Series, IOP Publishing, 1150(1), 012003.
  • [22] Koruk, H., Genç, G. 2019. Acoustic and Mechanical Properties of Luffa Fiber-Reinforced Biocomposites. In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, Woodhead Publishing, 325-341.
  • [23] Taban, E., Khavanin, A., Ohadi, A., Putra, A., Jafari, A. J., Faridan, M., Soleimanian, A. 2019. Study on the Acoustic Characteristics of Natural Date Palm Fibres: Experimental and Theoretical Approaches. Building and Environment, 161, 106274.
  • [24] Ghali, L., Msahli, S., Zidi, M., Sakli, F. 2009. Effect of Pre-Treatment of Luffa Fibres on The Structural Properties. Materials letters, 63(1), 61-63.
  • [25] Contreras-Andrade, I., Rincón-Pardo, D., Guerrero-Fajardo, C. A., Parra-Santiago, J., Guerrero-Romero, E. 2014. Natural Composite Material from Steelwool or Luffa Cylindrica under Natural, Rigid and Flexible Resin. Journal of Chemistry and Chemical Engineering, 8, 906-917.
  • [26] Wang, R. M., Zheng, S. R., Zheng, Y. G. 2011. Polymer Matrix Composites and Technology. Elsevier-WP, Woodhead Publishing, Oxford 549s.
  • [27] Vidinlimen, G. T. 2010. Otomotiv endüstrisinde kullanılan gözenekli malzemelerin akustik özellikleri ve analizi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 149s, İstanbul
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Oya Keskin 0000-0003-3312-6462

Sevtap Yılmaz Demirkale 0000-0002-6451-1649

Publication Date April 20, 2020
Published in Issue Year 2020 Volume: 24 Issue: 1

Cite

APA Keskin, O., & Yılmaz Demirkale, S. (2020). Su Kabağı Lifi (Luffa Cylindrica)-Epoksi Kompozitinde Sesin Yutulma Performansını Etkileyen Parametreler. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(1), 201-208. https://doi.org/10.19113/sdufenbed.681607
AMA Keskin O, Yılmaz Demirkale S. Su Kabağı Lifi (Luffa Cylindrica)-Epoksi Kompozitinde Sesin Yutulma Performansını Etkileyen Parametreler. J. Nat. Appl. Sci. April 2020;24(1):201-208. doi:10.19113/sdufenbed.681607
Chicago Keskin, Oya, and Sevtap Yılmaz Demirkale. “Su Kabağı Lifi (Luffa Cylindrica)-Epoksi Kompozitinde Sesin Yutulma Performansını Etkileyen Parametreler”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, no. 1 (April 2020): 201-8. https://doi.org/10.19113/sdufenbed.681607.
EndNote Keskin O, Yılmaz Demirkale S (April 1, 2020) Su Kabağı Lifi (Luffa Cylindrica)-Epoksi Kompozitinde Sesin Yutulma Performansını Etkileyen Parametreler. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 1 201–208.
IEEE O. Keskin and S. Yılmaz Demirkale, “Su Kabağı Lifi (Luffa Cylindrica)-Epoksi Kompozitinde Sesin Yutulma Performansını Etkileyen Parametreler”, J. Nat. Appl. Sci., vol. 24, no. 1, pp. 201–208, 2020, doi: 10.19113/sdufenbed.681607.
ISNAD Keskin, Oya - Yılmaz Demirkale, Sevtap. “Su Kabağı Lifi (Luffa Cylindrica)-Epoksi Kompozitinde Sesin Yutulma Performansını Etkileyen Parametreler”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24/1 (April 2020), 201-208. https://doi.org/10.19113/sdufenbed.681607.
JAMA Keskin O, Yılmaz Demirkale S. Su Kabağı Lifi (Luffa Cylindrica)-Epoksi Kompozitinde Sesin Yutulma Performansını Etkileyen Parametreler. J. Nat. Appl. Sci. 2020;24:201–208.
MLA Keskin, Oya and Sevtap Yılmaz Demirkale. “Su Kabağı Lifi (Luffa Cylindrica)-Epoksi Kompozitinde Sesin Yutulma Performansını Etkileyen Parametreler”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 24, no. 1, 2020, pp. 201-8, doi:10.19113/sdufenbed.681607.
Vancouver Keskin O, Yılmaz Demirkale S. Su Kabağı Lifi (Luffa Cylindrica)-Epoksi Kompozitinde Sesin Yutulma Performansını Etkileyen Parametreler. J. Nat. Appl. Sci. 2020;24(1):201-8.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.