Research Article
BibTex RIS Cite

Investigation of Photocatalytic Activities of Meso-porous SnO2 Nanocomposites

Year 2021, Volume: 25 Issue: 2, 466 - 472, 20.08.2021
https://doi.org/10.19113/sdufenbed.926976

Abstract

In this present study, photocatalytic activities of pure SnO2 and porous sodium carboxymethyl cellulose (Na-CMC) incorporated SnO2 nanocomposites were investigated. Pure SnO2 and Na-CMC incorporated SnO2 nanocomposites were directly synthesized using colloidal SnO2 solution by drop-casting method which is a facile and low cost method. Structural and morphological characterizations of the synthesized materials were made by XRD and SEM analysis. In addition, photocatalytic activities of pure, 5 wt % and 10 wt % (by weight) Na-CMC doped SnO2 nanocomposites were investigated by the degradation of methylene blue aqueous solution under UV light. In the degradation experiments of methylene blue, 5 wt % Na-CMC incorporated SnO2 exhibited a very high photocatalytic activity. SnO2, which has a porous structure, has improved the increase of the photocatalytic activity through its many active sites.

References

  • [1] Postel, S. L., Daily, G. C., Ehrlich, P. R. 1996. Human Appropriation of Renewable Fresh Water. Science, 271(5250), 785-788.
  • [2] Fujishima, A., Honda, K. 1972. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238(5358), 37-38.
  • [3] Yıldırım, Ö. A., Unalan, H. E., Durucan, C. 2013. Highly Efficient Room Temperature Synthesis of Silver-Doped Zinc Oxide (ZnO:Ag) Nanoparticles: Structural, Optical, and Photocatalytic Properties. Journal of the American Ceramic Society, 96(3), 766-773.
  • [4] Szilagyi, I. M., Forizs, B., Rosseler, O., Szegedi, A., Nemeth, P., Kiraly, P., Tarkanyi, G., Vajna, B., Varga-Josepovits, K., Laszlo, K., Toth, A. L., Baranyai, P., Leskela, M. 2012. WO3 photocatalysts: Influence of structure and composition. Journal of Catalysis, 294, 119-127.
  • [5] Jayaraj, S. K., Sadishkumar, V., Arun, T., Thangadurai, P. 2018. Enhanced photocatalytic activity of V2O5 nanorods for the photodegradation of organic dyes: A detailed understanding of the mechanism and their antibacterial activity. Materials Science in Semiconductor Processing, 85, 122-133.
  • [6] Karunakaran, C., Senthilvelan, S. 2006. Fe2O3-photocatalysis with sunlight and UV light: Oxidation of aniline. Electrochemistry Communications, 8(1), 95-101.
  • [7] Zhang, Z., Wang, W., Shang, M., Yin, W. 2010. Photocatalytic degradation of rhodamine B and phenol by solution combustion synthesized BiVO4 photocatalyst. Catalysis Communications, 11(11), 982-986.
  • [8] Xu, L., Xu, H., Wu, S., Zhang, X. 2012. Synergy effect over electrodeposited submicron Cu2O films in photocatalytic degradation of methylene blue. Applied Surface Science, 258(11), 4934-4938.
  • [9] Li, Y., Yang, Q., Wang, Z., Wang, G., Zhang, B., Zhang, Q., Yang, D. 2018. Rapid fabrication of SnO2 nanoparticle photocatalyst: computational understanding and photocatalytic degradation of organic dye. Inorganic Chemistry Frontiers, 5(12), 3005-3014.
  • [10] Das, S., Jayaraman, V. 2014. SnO2: A comprehensive review on structures and gas sensors. Progress in Materials Science, 66, 112-255.
  • [11] Wei, B. -Y., Hsu, M. -C., Su, P.-G., Lin, H. -M., Wu, R. -J., Lai, H. -J. 2004. A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature. Sensors and Actuators B: Chemical, 101(1), 81-89.
  • [12] Birkel, A., Lee, Y. -G., Koll, D., Meerbeek, X. V., Frank, S., Choi, M. J., Kang, Y. S., Char, K., Tremel, W. 2012. Highly efficient and stable dye-sensitized solar cells based on SnO2 nanocrystals prepared by microwave-assisted synthesis. Energy & Environmental Science, 5(1), 5392-5400.
  • [13] Ferrere, S., Zaban, A., Gregg, B. A. 1997. Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives. The Journal of Physical Chemistry B, 101(23), 4490-4493.
  • [14] Tennakone, K., R. R. A. Kumara, G., R. M. Kottegoda, I., P. S. Perera, V. 1999. An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chemical Communications, 1, 15-16.
  • [15] Jiang, Q., Chu, Z., Wang, P., Yang, X., Liu, H., Wang, Y., Yin, Z., Wu, J., Zhang, X., You, J. 2017. Planar-Structure Perovskite Solar Cells with Efficiency beyond 21%. Advanced Materials, 29(46), 1703852.
  • [16] Akin, S. 2019. Hysteresis-Free Planar Perovskite Solar Cells with a Breakthrough Efficiency of 22% and Superior Operational Stability over 2000 h. ACS Applied Materials & Interfaces, 11(43), 39998-40005.
  • [17] Aldemir, D. A., Benhaliliba, M., Benouis, C. E. 2020. Photodiode based on Al-doped SnO2: Fabrication, current-voltage and capacitance-conductance-voltage measurements. Optik, 222, 165487.
  • [18] Park, M. -S., Wang, G. -X., Kang, Y. -M., Wexler, D., Dou, S. -X., Liu, H. -K. 2007. Preparation and Electrochemical Properties of SnO2 Nanowires for Application in Lithium-Ion Batteries. Angewandte Chemie International Edition, 46 (5), 750-753.
  • [19] Bhattacharjee, A., Ahmaruzzaman, M., Sinha, T. 2015. A novel approach for the synthesis of SnO2 nanoparticles and its application as a catalyst in the reduction and photodegradation of organic compounds. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 751-760.
  • [20] Vinodgopal, K., Kamat, P. V. 1995. Enhanced Rates of Photocatalytic Degradation of an Azo Dye Using SnO2/TiO2 Coupled Semiconductor Thin Films. Environmental Science & Technology, 29(3), 841-845.
  • [21] Vinodgopal, K., Bedja, I., Kamat, P. V. 1996. Nanostructured Semiconductor Films for Photocatalysis. Photoelectrochemical Behavior of SnO2/TiO2 Composite Systems and Its Role in Photocatalytic Degradation of a Textile Azo Dye. Chemistry of Materials, 8(8), 2180-2187.
  • [22] Cun, W., Jincai, Z., Xinming, W., Bixian, M., Guoying, S., Ping’an, P., Jiamo, F. 2002. Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts. Applied Catalysis B: Environmental, 39(3), 269-279.
  • [23] Wang, C., Xu, B. -Q., Wang, X., Zhao, J. 2005. Preparation and photocatalytic activity of ZnO/TiO2/SnO2 mixture. Journal of Solid State Chemistry, 178(11), 3500-3506.
  • [24] Hou, L. -R., Yuan, C. -Z., Peng, Y. 2007. Synthesis and photocatalytic property of SnO2/TiO2 nanotubes composites. Journal of Hazardous Materials, 139(2), 310-315.
  • [25] Keles, E., Yildirim, M., Öztürk, T., Yildirim, O. A. 2020. Hydrothermally synthesized UV light active zinc stannate:tin oxide (ZTO:SnO2) nanocomposite photocatalysts for photocatalytic applications. Materials Science in Semiconductor Processing, 110, 104959.
  • [26] Xia, H. -l., Zhuang, H. -S., Zhang, T., Xiao, D. -C. 2007. Photocatalytic degradation of Acid Blue 62 over CuO-SnO2 nanocomposite photocatalyst under simulated sunlight. Journal of Environmental Sciences, 19(9), 1141-1145.
  • [27] Kang, J., Kuang, Q., Xie, Z. -X., Zheng, L. -S. 2011. Fabrication of the SnO2/α-Fe2O3 Hierarchical Heterostructure and Its Enhanced Photocatalytic Property. The Journal of Physical Chemistry C, 115(16), 7874-7879.
  • [28] Baylan, E., Culu, A., Yıldırım, M., Öztürk, T., Sönmezoglu, S., Yıldırım, O. A. 2019. Hidrotermal Yöntemle Sentezlenen Çinko Stanat (Zn2SnO4) Nanoparçacıkların Fotokatalitik Performanslarının İncelenmesi. Konya Mühendislik Bilimleri Dergisi, 7(3), 645-653.
  • [29] Dursun, S., Kaya, İ. C., Kocabaş, M., Akyildiz, H., Kalem, V. 2020. Visible light active heterostructured photocatalyst system based on CuO plate-like particles and SnO2 nanofibers. International Journal of Applied Ceramic Technology, 17(3), 1479-1489.
  • [30] Kim, S. P., Choi, M. Y., Choi, H. C. 2016. Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation. Materials Research Bulletin, 74, 85-89.
  • [31] Esen, B., Yumak, T., Sınağ, A., Yıldız, T. 2011. Investigation of Photocatalytic Effect of SnO2 Nanoparticles Synthesized by Hydrothermal Method on the Decolorization of Two Organic Dyes. Photochemistry and Photobiology, 87(2), 267-274.
  • [32] Haspulat, B., Sarıbel, M., Kamış, H. 2020. Surfactant assisted hydrothermal synthesis of SnO nanoparticles with enhanced photocatalytic activity. Arabian Journal of Chemistry, 13(1), 96-108.
  • [33] Al-Hamdi, A. M., Rinner, U., Sillanpää, M. 2017. Tin dioxide as a photocatalyst for water treatment: A review. Process Safety and Environmental Protection, 107, 190-205.
  • [34] Vignesh, K., Hariharan, R., Rajarajan, M., Suganthi, A. 2013. Photocatalytic performance of Ag doped SnO2 nanoparticles modified with curcumin. Solid State Sciences, 21, 91-99.
  • [35] Entradas, T., Cabrita, J. F., Dalui, S., Nunes, M. R., Monteiro, O. C., Silvestre, A. J. 2014. Synthesis of sub-5 nm Co-doped SnO2 nanoparticles and their structural, microstructural, optical and photocatalytic properties. Materials Chemistry and Physics, 147(3), 563-571.
  • [36] Rashad, M. M., Ismail, A. A., Osama, I., Ibrahim, I. A., Kandil, A. H. T. 2014. Decomposition of Methylene Blue on Transition Metals Doped SnO2 Nanoparticles. CLEAN – Soil, Air, Water, 42(5), 657-663.
  • [37] Reddy, C. V., Babu, B., Vattikuti, S. V. P., Ravikumar, R. V. S. S. N., Shim, J. 2016. Structural and optical properties of vanadium doped SnO2 nanoparticles with high photocatalytic activities. Journal of Luminescence, 179, 26-34.
  • [38] Reddy, C. V., Babu, B., Shim, J. 2017. Synthesis of Cr-doped SnO2 quantum dots and its enhanced photocatalytic activity. Materials Science and Engineering: B, 223, 131-142.
  • [39] Vadivel, S., Rajarajan, G. 2015. Influence of Cu doping on structural, optical and photocatalytic activity of SnO2 nanostructure thin films. Journal of Materials Science: Materials in Electronics, 26(8), 5863-5870.
  • [40] Ulagappan, N., Rao, C. N. R. 1996. Mesoporous phases based on SnO2 and TiO2. Chemical Communications, (14), 1685-1686.
  • [41] Wang, Y., Ma, C., Sun, X., Li, H. 2001. Synthesis of mesoporous structured material based on tin oxide, Microporous and Mesoporous Materials, 49 (1), 171-178.
  • [42] Srinivasan, N. R., Bandyopadhyaya, R. 2012. Highly accessible SnO2 nanoparticle embedded SBA-15 mesoporous silica as a superior photocatalyst. Microporous and Mesoporous Materials, 149(1), 166-171.
  • [43] Ma, L., Zhou, X. -P., Xu, L. -M., Xu, X. -Y., Zhang, L. -L. 2014. Biopolymer-assisted hydrothermal synthesis of SnO2 porous nanospheres and their photocatalytic properties. Ceramics International, 40(8, Part B), 13659-13665.
  • [44] Malik, R., Tomer, V. K., Rana, P. S., Nehra, S. P., Duhan, S. 2015. Surfactant assisted hydrothermal synthesis of porous 3-D hierarchical SnO2 nanoflowers for photocatalytic degradation of Rose Bengal. Materials Letters, 154, 124-127.
  • [45] Xu, H., Chen, J., Wang, D., Sun, Z., Zhang, P., Zhang, Y., Guo, X. 2017. Hierarchically porous carbon-coated SnO2@graphene foams as anodes for lithium ion storage. Carbon, 124, 565-575.
  • [46] Park, G. D., Kang, Y. C. 2018. Rational design and synthesis of hierarchically structured SnO2 microspheres assembled from hollow porous nanoplates as superior anode materials for lithium-ion batteries. Nano Research, 11(3), 1301-1312.
  • [47] Yan, H., Zhang, W., Kan, X., Dong, L., Jiang, Z., Li, H., Yang, H., Cheng, R. 2011. Sorption of methylene blue by carboxymethyl cellulose and reuse process in a secondary sorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 380(1), 143-151.
  • [48] Chowdhury, R., Barah, N., Rashid, M. H. 2016. Facile Biopolymer Assisted Synthesis of Hollow SnO2 Nanostructures and Their Application in Dye Removal. ChemistrySelect, 1(15), 4682-4689.

Mezo-gözenekli SnO2 Nanokompozitlerin Fotokatalitik Aktivitelerinin İncelenmesi

Year 2021, Volume: 25 Issue: 2, 466 - 472, 20.08.2021
https://doi.org/10.19113/sdufenbed.926976

Abstract

Bu sunulan çalışmada, saf SnO2 ve gözenekli yapıya sahip sodyum karboksimetil selüloz (Na-CMC) içeren SnO2 nanokompozitlerin fotokatalitik aktiviteleri incelenmiştir. Saf SnO2 ve Na-CMC içeren SnO2 nanokompozitler doğrudan kolloidal SnO2 çözeltisi kullanılarak kolay ve düşük maliyetli bir yöntem olan damlatma biriktirme yöntemi ile sentezlenmiştir. Sentezlenen malzemelerin yapısal ve morfolojik karakterizasyonları XRD ve SEM analizleri ile yapılmıştır. Ayrıca saf, (ağırlıkça) %5 ve %10 Na-CMC katkılı SnO2 nanokompozitlerin fotokatalitik aktiviteleri, UV ışık altında metilen mavisi sulu çözeltisinin bozunması yoluyla incelenmiştir. Metilen mavisinin bozunma deneylerinde %5 Na-CMC içeren SnO2 oldukça yüksek bir fotokatalitik aktivite sergilemiştir. Gözenekli yapıya sahip SnO2, sahip olduğu çok sayıda aktif yer vasıtasıyla fotokatalitik aktivitenin artışını sağlamıştır.

References

  • [1] Postel, S. L., Daily, G. C., Ehrlich, P. R. 1996. Human Appropriation of Renewable Fresh Water. Science, 271(5250), 785-788.
  • [2] Fujishima, A., Honda, K. 1972. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238(5358), 37-38.
  • [3] Yıldırım, Ö. A., Unalan, H. E., Durucan, C. 2013. Highly Efficient Room Temperature Synthesis of Silver-Doped Zinc Oxide (ZnO:Ag) Nanoparticles: Structural, Optical, and Photocatalytic Properties. Journal of the American Ceramic Society, 96(3), 766-773.
  • [4] Szilagyi, I. M., Forizs, B., Rosseler, O., Szegedi, A., Nemeth, P., Kiraly, P., Tarkanyi, G., Vajna, B., Varga-Josepovits, K., Laszlo, K., Toth, A. L., Baranyai, P., Leskela, M. 2012. WO3 photocatalysts: Influence of structure and composition. Journal of Catalysis, 294, 119-127.
  • [5] Jayaraj, S. K., Sadishkumar, V., Arun, T., Thangadurai, P. 2018. Enhanced photocatalytic activity of V2O5 nanorods for the photodegradation of organic dyes: A detailed understanding of the mechanism and their antibacterial activity. Materials Science in Semiconductor Processing, 85, 122-133.
  • [6] Karunakaran, C., Senthilvelan, S. 2006. Fe2O3-photocatalysis with sunlight and UV light: Oxidation of aniline. Electrochemistry Communications, 8(1), 95-101.
  • [7] Zhang, Z., Wang, W., Shang, M., Yin, W. 2010. Photocatalytic degradation of rhodamine B and phenol by solution combustion synthesized BiVO4 photocatalyst. Catalysis Communications, 11(11), 982-986.
  • [8] Xu, L., Xu, H., Wu, S., Zhang, X. 2012. Synergy effect over electrodeposited submicron Cu2O films in photocatalytic degradation of methylene blue. Applied Surface Science, 258(11), 4934-4938.
  • [9] Li, Y., Yang, Q., Wang, Z., Wang, G., Zhang, B., Zhang, Q., Yang, D. 2018. Rapid fabrication of SnO2 nanoparticle photocatalyst: computational understanding and photocatalytic degradation of organic dye. Inorganic Chemistry Frontiers, 5(12), 3005-3014.
  • [10] Das, S., Jayaraman, V. 2014. SnO2: A comprehensive review on structures and gas sensors. Progress in Materials Science, 66, 112-255.
  • [11] Wei, B. -Y., Hsu, M. -C., Su, P.-G., Lin, H. -M., Wu, R. -J., Lai, H. -J. 2004. A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature. Sensors and Actuators B: Chemical, 101(1), 81-89.
  • [12] Birkel, A., Lee, Y. -G., Koll, D., Meerbeek, X. V., Frank, S., Choi, M. J., Kang, Y. S., Char, K., Tremel, W. 2012. Highly efficient and stable dye-sensitized solar cells based on SnO2 nanocrystals prepared by microwave-assisted synthesis. Energy & Environmental Science, 5(1), 5392-5400.
  • [13] Ferrere, S., Zaban, A., Gregg, B. A. 1997. Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives. The Journal of Physical Chemistry B, 101(23), 4490-4493.
  • [14] Tennakone, K., R. R. A. Kumara, G., R. M. Kottegoda, I., P. S. Perera, V. 1999. An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chemical Communications, 1, 15-16.
  • [15] Jiang, Q., Chu, Z., Wang, P., Yang, X., Liu, H., Wang, Y., Yin, Z., Wu, J., Zhang, X., You, J. 2017. Planar-Structure Perovskite Solar Cells with Efficiency beyond 21%. Advanced Materials, 29(46), 1703852.
  • [16] Akin, S. 2019. Hysteresis-Free Planar Perovskite Solar Cells with a Breakthrough Efficiency of 22% and Superior Operational Stability over 2000 h. ACS Applied Materials & Interfaces, 11(43), 39998-40005.
  • [17] Aldemir, D. A., Benhaliliba, M., Benouis, C. E. 2020. Photodiode based on Al-doped SnO2: Fabrication, current-voltage and capacitance-conductance-voltage measurements. Optik, 222, 165487.
  • [18] Park, M. -S., Wang, G. -X., Kang, Y. -M., Wexler, D., Dou, S. -X., Liu, H. -K. 2007. Preparation and Electrochemical Properties of SnO2 Nanowires for Application in Lithium-Ion Batteries. Angewandte Chemie International Edition, 46 (5), 750-753.
  • [19] Bhattacharjee, A., Ahmaruzzaman, M., Sinha, T. 2015. A novel approach for the synthesis of SnO2 nanoparticles and its application as a catalyst in the reduction and photodegradation of organic compounds. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 751-760.
  • [20] Vinodgopal, K., Kamat, P. V. 1995. Enhanced Rates of Photocatalytic Degradation of an Azo Dye Using SnO2/TiO2 Coupled Semiconductor Thin Films. Environmental Science & Technology, 29(3), 841-845.
  • [21] Vinodgopal, K., Bedja, I., Kamat, P. V. 1996. Nanostructured Semiconductor Films for Photocatalysis. Photoelectrochemical Behavior of SnO2/TiO2 Composite Systems and Its Role in Photocatalytic Degradation of a Textile Azo Dye. Chemistry of Materials, 8(8), 2180-2187.
  • [22] Cun, W., Jincai, Z., Xinming, W., Bixian, M., Guoying, S., Ping’an, P., Jiamo, F. 2002. Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts. Applied Catalysis B: Environmental, 39(3), 269-279.
  • [23] Wang, C., Xu, B. -Q., Wang, X., Zhao, J. 2005. Preparation and photocatalytic activity of ZnO/TiO2/SnO2 mixture. Journal of Solid State Chemistry, 178(11), 3500-3506.
  • [24] Hou, L. -R., Yuan, C. -Z., Peng, Y. 2007. Synthesis and photocatalytic property of SnO2/TiO2 nanotubes composites. Journal of Hazardous Materials, 139(2), 310-315.
  • [25] Keles, E., Yildirim, M., Öztürk, T., Yildirim, O. A. 2020. Hydrothermally synthesized UV light active zinc stannate:tin oxide (ZTO:SnO2) nanocomposite photocatalysts for photocatalytic applications. Materials Science in Semiconductor Processing, 110, 104959.
  • [26] Xia, H. -l., Zhuang, H. -S., Zhang, T., Xiao, D. -C. 2007. Photocatalytic degradation of Acid Blue 62 over CuO-SnO2 nanocomposite photocatalyst under simulated sunlight. Journal of Environmental Sciences, 19(9), 1141-1145.
  • [27] Kang, J., Kuang, Q., Xie, Z. -X., Zheng, L. -S. 2011. Fabrication of the SnO2/α-Fe2O3 Hierarchical Heterostructure and Its Enhanced Photocatalytic Property. The Journal of Physical Chemistry C, 115(16), 7874-7879.
  • [28] Baylan, E., Culu, A., Yıldırım, M., Öztürk, T., Sönmezoglu, S., Yıldırım, O. A. 2019. Hidrotermal Yöntemle Sentezlenen Çinko Stanat (Zn2SnO4) Nanoparçacıkların Fotokatalitik Performanslarının İncelenmesi. Konya Mühendislik Bilimleri Dergisi, 7(3), 645-653.
  • [29] Dursun, S., Kaya, İ. C., Kocabaş, M., Akyildiz, H., Kalem, V. 2020. Visible light active heterostructured photocatalyst system based on CuO plate-like particles and SnO2 nanofibers. International Journal of Applied Ceramic Technology, 17(3), 1479-1489.
  • [30] Kim, S. P., Choi, M. Y., Choi, H. C. 2016. Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation. Materials Research Bulletin, 74, 85-89.
  • [31] Esen, B., Yumak, T., Sınağ, A., Yıldız, T. 2011. Investigation of Photocatalytic Effect of SnO2 Nanoparticles Synthesized by Hydrothermal Method on the Decolorization of Two Organic Dyes. Photochemistry and Photobiology, 87(2), 267-274.
  • [32] Haspulat, B., Sarıbel, M., Kamış, H. 2020. Surfactant assisted hydrothermal synthesis of SnO nanoparticles with enhanced photocatalytic activity. Arabian Journal of Chemistry, 13(1), 96-108.
  • [33] Al-Hamdi, A. M., Rinner, U., Sillanpää, M. 2017. Tin dioxide as a photocatalyst for water treatment: A review. Process Safety and Environmental Protection, 107, 190-205.
  • [34] Vignesh, K., Hariharan, R., Rajarajan, M., Suganthi, A. 2013. Photocatalytic performance of Ag doped SnO2 nanoparticles modified with curcumin. Solid State Sciences, 21, 91-99.
  • [35] Entradas, T., Cabrita, J. F., Dalui, S., Nunes, M. R., Monteiro, O. C., Silvestre, A. J. 2014. Synthesis of sub-5 nm Co-doped SnO2 nanoparticles and their structural, microstructural, optical and photocatalytic properties. Materials Chemistry and Physics, 147(3), 563-571.
  • [36] Rashad, M. M., Ismail, A. A., Osama, I., Ibrahim, I. A., Kandil, A. H. T. 2014. Decomposition of Methylene Blue on Transition Metals Doped SnO2 Nanoparticles. CLEAN – Soil, Air, Water, 42(5), 657-663.
  • [37] Reddy, C. V., Babu, B., Vattikuti, S. V. P., Ravikumar, R. V. S. S. N., Shim, J. 2016. Structural and optical properties of vanadium doped SnO2 nanoparticles with high photocatalytic activities. Journal of Luminescence, 179, 26-34.
  • [38] Reddy, C. V., Babu, B., Shim, J. 2017. Synthesis of Cr-doped SnO2 quantum dots and its enhanced photocatalytic activity. Materials Science and Engineering: B, 223, 131-142.
  • [39] Vadivel, S., Rajarajan, G. 2015. Influence of Cu doping on structural, optical and photocatalytic activity of SnO2 nanostructure thin films. Journal of Materials Science: Materials in Electronics, 26(8), 5863-5870.
  • [40] Ulagappan, N., Rao, C. N. R. 1996. Mesoporous phases based on SnO2 and TiO2. Chemical Communications, (14), 1685-1686.
  • [41] Wang, Y., Ma, C., Sun, X., Li, H. 2001. Synthesis of mesoporous structured material based on tin oxide, Microporous and Mesoporous Materials, 49 (1), 171-178.
  • [42] Srinivasan, N. R., Bandyopadhyaya, R. 2012. Highly accessible SnO2 nanoparticle embedded SBA-15 mesoporous silica as a superior photocatalyst. Microporous and Mesoporous Materials, 149(1), 166-171.
  • [43] Ma, L., Zhou, X. -P., Xu, L. -M., Xu, X. -Y., Zhang, L. -L. 2014. Biopolymer-assisted hydrothermal synthesis of SnO2 porous nanospheres and their photocatalytic properties. Ceramics International, 40(8, Part B), 13659-13665.
  • [44] Malik, R., Tomer, V. K., Rana, P. S., Nehra, S. P., Duhan, S. 2015. Surfactant assisted hydrothermal synthesis of porous 3-D hierarchical SnO2 nanoflowers for photocatalytic degradation of Rose Bengal. Materials Letters, 154, 124-127.
  • [45] Xu, H., Chen, J., Wang, D., Sun, Z., Zhang, P., Zhang, Y., Guo, X. 2017. Hierarchically porous carbon-coated SnO2@graphene foams as anodes for lithium ion storage. Carbon, 124, 565-575.
  • [46] Park, G. D., Kang, Y. C. 2018. Rational design and synthesis of hierarchically structured SnO2 microspheres assembled from hollow porous nanoplates as superior anode materials for lithium-ion batteries. Nano Research, 11(3), 1301-1312.
  • [47] Yan, H., Zhang, W., Kan, X., Dong, L., Jiang, Z., Li, H., Yang, H., Cheng, R. 2011. Sorption of methylene blue by carboxymethyl cellulose and reuse process in a secondary sorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 380(1), 143-151.
  • [48] Chowdhury, R., Barah, N., Rashid, M. H. 2016. Facile Biopolymer Assisted Synthesis of Hollow SnO2 Nanostructures and Their Application in Dye Removal. ChemistrySelect, 1(15), 4682-4689.
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Teoman Öztürk 0000-0002-5002-5412

Publication Date August 20, 2021
Published in Issue Year 2021 Volume: 25 Issue: 2

Cite

APA Öztürk, T. (2021). Mezo-gözenekli SnO2 Nanokompozitlerin Fotokatalitik Aktivitelerinin İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(2), 466-472. https://doi.org/10.19113/sdufenbed.926976
AMA Öztürk T. Mezo-gözenekli SnO2 Nanokompozitlerin Fotokatalitik Aktivitelerinin İncelenmesi. J. Nat. Appl. Sci. August 2021;25(2):466-472. doi:10.19113/sdufenbed.926976
Chicago Öztürk, Teoman. “Mezo-gözenekli SnO2 Nanokompozitlerin Fotokatalitik Aktivitelerinin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, no. 2 (August 2021): 466-72. https://doi.org/10.19113/sdufenbed.926976.
EndNote Öztürk T (August 1, 2021) Mezo-gözenekli SnO2 Nanokompozitlerin Fotokatalitik Aktivitelerinin İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 2 466–472.
IEEE T. Öztürk, “Mezo-gözenekli SnO2 Nanokompozitlerin Fotokatalitik Aktivitelerinin İncelenmesi”, J. Nat. Appl. Sci., vol. 25, no. 2, pp. 466–472, 2021, doi: 10.19113/sdufenbed.926976.
ISNAD Öztürk, Teoman. “Mezo-gözenekli SnO2 Nanokompozitlerin Fotokatalitik Aktivitelerinin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/2 (August 2021), 466-472. https://doi.org/10.19113/sdufenbed.926976.
JAMA Öztürk T. Mezo-gözenekli SnO2 Nanokompozitlerin Fotokatalitik Aktivitelerinin İncelenmesi. J. Nat. Appl. Sci. 2021;25:466–472.
MLA Öztürk, Teoman. “Mezo-gözenekli SnO2 Nanokompozitlerin Fotokatalitik Aktivitelerinin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 25, no. 2, 2021, pp. 466-72, doi:10.19113/sdufenbed.926976.
Vancouver Öztürk T. Mezo-gözenekli SnO2 Nanokompozitlerin Fotokatalitik Aktivitelerinin İncelenmesi. J. Nat. Appl. Sci. 2021;25(2):466-72.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.