Research Article
BibTex RIS Cite

Şabazit Tipi Doğal Zeolit Kullanılarak Amonyak Gazının Uzaklaştırılması

Year 2022, Volume: 26 Issue: 1, 77 - 82, 25.04.2022
https://doi.org/10.19113/sdufenbed.954308

Abstract

Bu çalışmada, Bala'dan elde edilen şabazit (CHA) ve katyon (Na+, K+, Ca+2 ve Mg+2) değiştirilmiş ve hidroklorik asitle aktifleştirilmiş formları, ortamdan amonyak giderimindeki olası kullanılabilirliklerini göstermek amacıyla incelendi. Katyon değiştirilmiş ve asitle aktiflenmiş formlar sırasıyla, 1.0 M’lık KNO3, NaNO3, Mg(NO3)2, Ca(NO3)2 ve 0.1 M ve 1.0 M’lık HCl solüsyonları kullanılarak 90 oC'de 5 saat süreyle hazırlandı. Tüm numunelerin termal ve yapısal özellikleri TG-DTA, XRD ve XRF yöntemleri ile belirlendi. Şabazit numunelerinin BET yüzey alanları (231-448 m2 g-1), mikro gözenek yüzey alanları (216.2-421.3 m2 g-1) ve mikro gözenek hacimleri (0.086-0.169 cm3 g-1) 77 K'de elde edilen N2 adsorpsiyon izotermleri ile hesaplandı. Amonyak adsorpsiyon izotermleri 3Flex-Micromeritics cihazı ile 25 °C'de volumetrik olarak elde edildi. Şabazit numunelerinin amonyak adsorpsiyon kapasiteleri (5.699-8.931 mmol g-1), sırasıyla katyon değişimi ve asit aktivasyon işlemlerinin neden olduğu içeriksel ve yapısal değişiklikler açısından karşılaştırıldı.

Supporting Institution

Anadolu ÜNİVERSİTESİ

Project Number

1602F072

References

  • [1] Carson, P., Mumford, C. 2002. Hazardous chemicals handbook, Butterworth-Heinemann, Oxford, 276p.
  • [2] Sax, N. I. 1984. Dangerous properties of industrial materials. Van Nostrand Reinhold, New York, 1251p.
  • [3] Eddy, F. B. 1999. Water/Air Transitions in Biology. Science Publishers inc, U.S.A, 281p.
  • [4] United States Department of Labour: Ammonia, http://www.osha.gov/dts/chemicalsampling/data/CH_218300.html (accessed December 2021).
  • [5] Darestani, M., Haigh, V., Couperthwaite, S. J., Millar G. J., Nghiem, L. D. 2017. Hollow fibre membrane contactors for ammonia recovery: Currentstatus and future developments. Journal of Environmental Chemical Engineering, 5, 1349-1359.
  • [6] Maia, G. D. N., Day G. B., Gates V. R. S., Taraba, J. L. 2012. Ammonia biofiltration and nitrous oxide generation during the start-upof gas-phase compost biofilters. Atmospheric Environment, 46, 659-664.
  • [7] Byeon, S. H., Lee B. K., Raj Mohan, B. 2012. Removal of ammonia and particulate matter using a modified turbulentwet scrubbing system, Separation and Purification Technology, 98, 221-229.
  • [8] Li, J., Tang, X., Yi, H., Yu, Q., Gao, F., Zhang, R., Li, C., Chu, C. 2017. Effects of copper-precursors on the catalytic activity of Cu/graphene catalysts for the selective catalytic oxidation of ammonia, Applied Surfuce Science, 412, 37-44.
  • [9] Sun, M., Wang, S., Li, Y., Xu H., Chen, Y. 2017. Promotion of catalytic performance by adding W into Pt/ZrO2 catalyst for selective catalytic oxidation of ammonia, Applied Surface Science, 402, 323-329.
  • [10] Breck, D. W. 1984. Zeolite molecular sieves, Wiley, New York, 4p.
  • [11] Gottardi, G., Galli, E. 1985. Natural zeolites, Springer, Berlin, 4p.
  • [12] Armbruster, T., Gunter, M. E. Reviews in Mineralogy and Geochemistry. pp. 1-68. Bish, D. L., Ming, D. W. eds. 2001. Natural Zeolites: Occurrances, Properties, Applications, Mineralogical Society of America, Washington, 81p.
  • [13] Zhang, J., Singh, R., Webley, P. A. 2008. Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture. Microporous and Mesoporous Materials, 111, 478-487.
  • [14] Smith, J. V. 1962. Crystal structures with a chabazite framework. I. dehydrated Ca-chabazite. Acta Crystallographica, 15, 835-845.
  • [15] Saha, D., Deng, S. 2010. Ammonia adsorption and its effects on framework stability of MOF-5 and MOF-177. Journal of Colloid and Interface Science, 348, 615-620.
  • [16] Moghadam, P. Z., Fairen-Jimenez, D., Snurr, R. Q. 2016. Efficient identification of hydrophobic MOFs: application in the capture of toxic industrial chemicals. ‎Journal of Material Chemistry A, 4, 529-536.
  • [17] Katz, M. J., Howarth, A. J., Moghadam, P. Z., DeCoste, J. B., Snurr, R. Q., Hupp, J. T., Farha, O. K. 2016. High volumetric uptake of ammonia using Cu-MOF-74/Cu-CPO-27. Dalton Transactions, 45, 4150-4153.
  • [18] Kallo, D., Papp, J., Valyon, J. 1982. Adsorption and catalytic properties of sedimentary clinoptilolite and mordenite from the Tokaj Hills, Hungary. Zeolites, 2, 13-16.
  • [19] Caputo, D., De Gennaro, B., Liguori, B., Pansini, M., Colella, C. 2001. Adsorption properties of clinoptilolite-rich tuff from Thrace, NE Greece. Studies in Surface Science and Catalysis, 140, 121-129.
  • [20] Asilian, H., Mortazavi, S. B., Kazemian, H., Phaghihzadeh, S., Shahtaheri, S., Salem, M. 2004. Removal of ammonia from air, using three iranian zeolites. Iranian Journal of Public Health, 33, 45-51.
  • [21] Helminen, J., Helenius, J., Paatero, E. 2001. Adsorption equilibria of ammonia gas on inorganic and organic sorbents at 298.15 K. Journal of Chemical Engineering Data, 46, 391-399.
  • [22] Saha, D., Deng, S. 2010. Adsorption equilibrium and kinetics of CO2, CH4, N2O and NH3 on ordered mesoporous carbon. Journal of Colloid and Interface Science, 345, 402-409.
  • [23] Hayhurst, D. T. 1980. Gas adsorption by some natural zeolites. Chemical Engineering Communications, 4, 729-735.
  • [24] Petit, C., Mendoz, B., Bandosz, T. J. 2010. Reactive Adsorption of Ammonia on Cu-Based MOF/Graphene Composites. Langmuir, 26, 15302-15309.
  • [25] Vikrant, K., Kumar, V., Kim, K. H., Kukkar, D. 2017. Metal-organic frameworks (MOFs): potential and challenges for capture and abatement of ammonia. ‎ Journal of Materials Chemistry A, 5, 22877-22896.
  • [26] McHugh, L. N., Terracina, A., Wheatley, P. S., Buscarino, G., Smith, M. W., Morris, R. E. 2019. Metal-Organic Framework-Activated Carbon Composite Materials for the Removal of Ammonia from Contaminated Airstreams. Angewandte Chemie International Edition, 58, 11747-11751.
  • [27] Ciahotny, K., Melenova, L., Jirglova, H., Pachtova, O., Kocirık, M., Eic, M. 2006. Removal of ammonia from waste air streams with clinoptilolite tuff in its natural and treated forms. Adsorption, 12, 219-226. [28] Huang, C. C., Li, H. S., Chen, C. H. 2008. Effect of surface acidic oxides of activated carbon on adsorption of ammonia. Journal of Hazardous Materials, 159, 523-527.
  • [29] Moore, D. M., Reynolds, Jr. R. C. 1997. X-ray Diffraction and the Identification and Analysis of Clay Minerals. second ed., Oxford University Press, New York, 255p.
  • [30] Lowell, S. Shields, J. E. Thomas, M. A. Thommes, M. 2006. Characterization of porous solids and powders: surface area, pore size and density. Springer, Netherlands, 12p.
  • [31] Barrer, R. M., Langley, D. A. 1958. Reactions and stability of chabazite-like phases. Part I. Ion-exchanged forms of natural chabazite. Journal of the Chemical Society, 380, 4–11.
  • [32] Sakizci, M., Erdoğan Alver, B. 2017. Effect of salt modification on thermal behavior, immersion heats and methane adsorption properties of chabazite tuff. Journal of Thermal Analysis and Calorimetry, 129, 441–449.

Removal of Ammonia Gas Using Chabazite Type Natural Zeolite

Year 2022, Volume: 26 Issue: 1, 77 - 82, 25.04.2022
https://doi.org/10.19113/sdufenbed.954308

Abstract

In this study, chabazite (CHA) from Bala and that of cation (Na+, K+, Ca2+ and Mg2+) exchanged and hydrochloric acid activated forms were investigated to demonstrate their possible usability in the ammonia removal from the environment. Cation exchanged and acid activated forms were prepared using 1.0 M solutions of KNO3, NaNO3, Mg(NO3)2, Ca(NO3)2 and 0.1 M and 1.0 M solutions of HCl at 90 oC for 5 h, respectively. The thermal and structural properties of all samples were characterized by TG-DTA, XRD and XRF methods. BET surface areas (231-448 m2 g-1), micropore surface areas (216.2-421.3 m2 g-1) and micropore volumes (0.086-0.169 cm3 g-1) of the chabazite samples were calculated by N2 adsorption isotherms at 77 K. Ammonia adsorption isotherms were obtained at 25 °C by 3Flex-Micromeritics equipment volumetrically. Ammonia adsorption capacities of the chabazite samples (5.699-8.931 mmol g-1) were compared in terms of the induced textural and structural changes as a result of cation exchange and acid activation processes, respectively.

Project Number

1602F072

References

  • [1] Carson, P., Mumford, C. 2002. Hazardous chemicals handbook, Butterworth-Heinemann, Oxford, 276p.
  • [2] Sax, N. I. 1984. Dangerous properties of industrial materials. Van Nostrand Reinhold, New York, 1251p.
  • [3] Eddy, F. B. 1999. Water/Air Transitions in Biology. Science Publishers inc, U.S.A, 281p.
  • [4] United States Department of Labour: Ammonia, http://www.osha.gov/dts/chemicalsampling/data/CH_218300.html (accessed December 2021).
  • [5] Darestani, M., Haigh, V., Couperthwaite, S. J., Millar G. J., Nghiem, L. D. 2017. Hollow fibre membrane contactors for ammonia recovery: Currentstatus and future developments. Journal of Environmental Chemical Engineering, 5, 1349-1359.
  • [6] Maia, G. D. N., Day G. B., Gates V. R. S., Taraba, J. L. 2012. Ammonia biofiltration and nitrous oxide generation during the start-upof gas-phase compost biofilters. Atmospheric Environment, 46, 659-664.
  • [7] Byeon, S. H., Lee B. K., Raj Mohan, B. 2012. Removal of ammonia and particulate matter using a modified turbulentwet scrubbing system, Separation and Purification Technology, 98, 221-229.
  • [8] Li, J., Tang, X., Yi, H., Yu, Q., Gao, F., Zhang, R., Li, C., Chu, C. 2017. Effects of copper-precursors on the catalytic activity of Cu/graphene catalysts for the selective catalytic oxidation of ammonia, Applied Surfuce Science, 412, 37-44.
  • [9] Sun, M., Wang, S., Li, Y., Xu H., Chen, Y. 2017. Promotion of catalytic performance by adding W into Pt/ZrO2 catalyst for selective catalytic oxidation of ammonia, Applied Surface Science, 402, 323-329.
  • [10] Breck, D. W. 1984. Zeolite molecular sieves, Wiley, New York, 4p.
  • [11] Gottardi, G., Galli, E. 1985. Natural zeolites, Springer, Berlin, 4p.
  • [12] Armbruster, T., Gunter, M. E. Reviews in Mineralogy and Geochemistry. pp. 1-68. Bish, D. L., Ming, D. W. eds. 2001. Natural Zeolites: Occurrances, Properties, Applications, Mineralogical Society of America, Washington, 81p.
  • [13] Zhang, J., Singh, R., Webley, P. A. 2008. Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture. Microporous and Mesoporous Materials, 111, 478-487.
  • [14] Smith, J. V. 1962. Crystal structures with a chabazite framework. I. dehydrated Ca-chabazite. Acta Crystallographica, 15, 835-845.
  • [15] Saha, D., Deng, S. 2010. Ammonia adsorption and its effects on framework stability of MOF-5 and MOF-177. Journal of Colloid and Interface Science, 348, 615-620.
  • [16] Moghadam, P. Z., Fairen-Jimenez, D., Snurr, R. Q. 2016. Efficient identification of hydrophobic MOFs: application in the capture of toxic industrial chemicals. ‎Journal of Material Chemistry A, 4, 529-536.
  • [17] Katz, M. J., Howarth, A. J., Moghadam, P. Z., DeCoste, J. B., Snurr, R. Q., Hupp, J. T., Farha, O. K. 2016. High volumetric uptake of ammonia using Cu-MOF-74/Cu-CPO-27. Dalton Transactions, 45, 4150-4153.
  • [18] Kallo, D., Papp, J., Valyon, J. 1982. Adsorption and catalytic properties of sedimentary clinoptilolite and mordenite from the Tokaj Hills, Hungary. Zeolites, 2, 13-16.
  • [19] Caputo, D., De Gennaro, B., Liguori, B., Pansini, M., Colella, C. 2001. Adsorption properties of clinoptilolite-rich tuff from Thrace, NE Greece. Studies in Surface Science and Catalysis, 140, 121-129.
  • [20] Asilian, H., Mortazavi, S. B., Kazemian, H., Phaghihzadeh, S., Shahtaheri, S., Salem, M. 2004. Removal of ammonia from air, using three iranian zeolites. Iranian Journal of Public Health, 33, 45-51.
  • [21] Helminen, J., Helenius, J., Paatero, E. 2001. Adsorption equilibria of ammonia gas on inorganic and organic sorbents at 298.15 K. Journal of Chemical Engineering Data, 46, 391-399.
  • [22] Saha, D., Deng, S. 2010. Adsorption equilibrium and kinetics of CO2, CH4, N2O and NH3 on ordered mesoporous carbon. Journal of Colloid and Interface Science, 345, 402-409.
  • [23] Hayhurst, D. T. 1980. Gas adsorption by some natural zeolites. Chemical Engineering Communications, 4, 729-735.
  • [24] Petit, C., Mendoz, B., Bandosz, T. J. 2010. Reactive Adsorption of Ammonia on Cu-Based MOF/Graphene Composites. Langmuir, 26, 15302-15309.
  • [25] Vikrant, K., Kumar, V., Kim, K. H., Kukkar, D. 2017. Metal-organic frameworks (MOFs): potential and challenges for capture and abatement of ammonia. ‎ Journal of Materials Chemistry A, 5, 22877-22896.
  • [26] McHugh, L. N., Terracina, A., Wheatley, P. S., Buscarino, G., Smith, M. W., Morris, R. E. 2019. Metal-Organic Framework-Activated Carbon Composite Materials for the Removal of Ammonia from Contaminated Airstreams. Angewandte Chemie International Edition, 58, 11747-11751.
  • [27] Ciahotny, K., Melenova, L., Jirglova, H., Pachtova, O., Kocirık, M., Eic, M. 2006. Removal of ammonia from waste air streams with clinoptilolite tuff in its natural and treated forms. Adsorption, 12, 219-226. [28] Huang, C. C., Li, H. S., Chen, C. H. 2008. Effect of surface acidic oxides of activated carbon on adsorption of ammonia. Journal of Hazardous Materials, 159, 523-527.
  • [29] Moore, D. M., Reynolds, Jr. R. C. 1997. X-ray Diffraction and the Identification and Analysis of Clay Minerals. second ed., Oxford University Press, New York, 255p.
  • [30] Lowell, S. Shields, J. E. Thomas, M. A. Thommes, M. 2006. Characterization of porous solids and powders: surface area, pore size and density. Springer, Netherlands, 12p.
  • [31] Barrer, R. M., Langley, D. A. 1958. Reactions and stability of chabazite-like phases. Part I. Ion-exchanged forms of natural chabazite. Journal of the Chemical Society, 380, 4–11.
  • [32] Sakizci, M., Erdoğan Alver, B. 2017. Effect of salt modification on thermal behavior, immersion heats and methane adsorption properties of chabazite tuff. Journal of Thermal Analysis and Calorimetry, 129, 441–449.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Aytaç Günal 0000-0002-4287-6612

Burcu Erdoğan 0000-0002-2282-5375

Project Number 1602F072
Publication Date April 25, 2022
Published in Issue Year 2022 Volume: 26 Issue: 1

Cite

APA Günal, A., & Erdoğan, B. (2022). Şabazit Tipi Doğal Zeolit Kullanılarak Amonyak Gazının Uzaklaştırılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(1), 77-82. https://doi.org/10.19113/sdufenbed.954308
AMA Günal A, Erdoğan B. Şabazit Tipi Doğal Zeolit Kullanılarak Amonyak Gazının Uzaklaştırılması. J. Nat. Appl. Sci. April 2022;26(1):77-82. doi:10.19113/sdufenbed.954308
Chicago Günal, Aytaç, and Burcu Erdoğan. “Şabazit Tipi Doğal Zeolit Kullanılarak Amonyak Gazının Uzaklaştırılması”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26, no. 1 (April 2022): 77-82. https://doi.org/10.19113/sdufenbed.954308.
EndNote Günal A, Erdoğan B (April 1, 2022) Şabazit Tipi Doğal Zeolit Kullanılarak Amonyak Gazının Uzaklaştırılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26 1 77–82.
IEEE A. Günal and B. Erdoğan, “Şabazit Tipi Doğal Zeolit Kullanılarak Amonyak Gazının Uzaklaştırılması”, J. Nat. Appl. Sci., vol. 26, no. 1, pp. 77–82, 2022, doi: 10.19113/sdufenbed.954308.
ISNAD Günal, Aytaç - Erdoğan, Burcu. “Şabazit Tipi Doğal Zeolit Kullanılarak Amonyak Gazının Uzaklaştırılması”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26/1 (April 2022), 77-82. https://doi.org/10.19113/sdufenbed.954308.
JAMA Günal A, Erdoğan B. Şabazit Tipi Doğal Zeolit Kullanılarak Amonyak Gazının Uzaklaştırılması. J. Nat. Appl. Sci. 2022;26:77–82.
MLA Günal, Aytaç and Burcu Erdoğan. “Şabazit Tipi Doğal Zeolit Kullanılarak Amonyak Gazının Uzaklaştırılması”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 26, no. 1, 2022, pp. 77-82, doi:10.19113/sdufenbed.954308.
Vancouver Günal A, Erdoğan B. Şabazit Tipi Doğal Zeolit Kullanılarak Amonyak Gazının Uzaklaştırılması. J. Nat. Appl. Sci. 2022;26(1):77-82.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.