Effect of Intercritical Annealing on the Properties of Dual Phase Steel via Finite Element Method
Year 2023,
Volume: 27 Issue: 1, 103 - 106, 25.04.2023
Adnan Akman
,
Yağız Akyıldız
,
Rıdvan Yamanoğlu
Abstract
Dual phase (DP) steels are rapidly becoming more and more popular for automotive applications. They offer a weight reduction with a combination of energy absorption for crash zones. Rails, reinforcements, back panels, cross members, and pillars can be given as application examples. DP steels microstructure consists of a soft ferrite matrix with hard martensite islands. The hard martensite islands provide strength while the ductile ferrite provides formability. The strength level of DP steel is related to the amount of martensite in the microstructure, and the martensite amount can be arranged via intercritical annealing. In this work, thermodynamic analysis of St52 steel was carried out with Thermo-Calc software. A1 and A3 temperatures were determined by calculating the temperature-dependent phase fractions. Intercritical annealing temperatures were determined according to the calculated critical temperatures (A1 and A3). The intercritical annealing process was modelled by using Simheat NxT software. In this modelling and simulation work, the effect of intercritical annealing temperature on the final microstructure and hardness of DP steel was investigated.
References
- [1] Chen, W., Zhang, Q., Wang, C., Li, Z., Geng, Y., Hong, J., & Cheng, Y. (2022). Environmental sustainability challenges of China’s steel production: Impact-oriented water, carbon and fossil energy footprints assessment. Ecological Indicators, 136, 108660
- [2] Schmitt, J. H., & Iung, T. (2018). New developments of advanced high-strength steels for automotive applications. Comptes Rendus Physique, 19(8), 641-656
- [3] Akyıldız, Y., Öztürk, O. & Simsar, B. (2021). Al-10Si-xMg Alaşımının CALPHAD Metodolojisi ile Termodinamik Karakterizasyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25 (3), 699-704
- [4] Baluch, N., Udin, Z. M., & Abdullah, C. S. (2014). Advanced high strength steel in auto industry: an overview. Engineering, Technology & Applied Science Research, 4(4), 686-689
- [5] Gao, X., Wang, H., Xing, L., Ma, C., Li, Y., Sha, G., & Ren, H. (2021). The synergistic effects of ultrafine grains and nano-size Cu-rich precipitates on the mechanical properties of DP steels. Materials Science and Engineering: A, 805, 140547
- [6] Lai, Q., Bouaziz, O., Gouné, M., Perlade, A., Bréchet, Y., & Pardoen, T. (2015). Microstructure refinement of dual-phase steels with 3.5 wt% Mn: Influence on plastic and fracture behavior. Materials Science and Engineering: A, 638, 78-89
- [7] Jamei, F., Mirzadeh, H., & Zamani, M. (2019). Synergistic effects of holding time at intercritical annealing temperature and initial microstructure on the mechanical properties of dual phase steel. Materials Science and Engineering: A, 750, 125-131
- [8] Aydin H., Zeytin Kazdal H., & Ceylan, K. (2010). Effect of intercritical annealing parameters on dual phase behavior of commercial low-alloyed steels. Journal of Iron and Steel Research International, 17(4), 73-78
- [9] Li, Y., Song, R., Jiang, L., & Zhao, Z. (2019). Strength response of 1200 MPa grade martensite-ferrite dual-phase steel under high strain rates. Scripta Materialia, 164, 21-24
- [10] Calcagnotto, M., Ponge, D., & Raabe, D. (2010). Effect of grain refinement to 1 μm on strength and toughness of dual-phase steels. Materials Science and Engineering: A, 527(29-30), 7832-7840
- [11] Papa Rao, M., Subramanya Sarma, V., & Sankaran, S. (2014). Processing of bimodal grain-sized ultrafine-grained dual phase microalloyed V-Nb steel with 1370 MPa strength and 16 pct uniform elongation through warm rolling and intercritical annealing. Metallurgical and Materials Transactions A, 45(12), 5313-5317
- [12] Kalhor, A., Soleimani, M., Mirzadeh, H., & Uthaisangsuk, V. (2020). A review of recent progress in mechanical and corrosion properties of dual phase steels. Archives of Civil and Mechanical Engineering, 20(3), 1-14
- [13] Tasan, C. C., Diehl, M., Yan, D., Bechtold, M., Roters, F., Schemmann, L., & Raabe, D. (2015). An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design. Annual Review of Materials Research, 45, 391-431
- [14] Maleki, M., Mirzadeh, H., & Zamani, M. (2018). Effect of Intercritical Annealing on Mechanical Properties and Work‐Hardening Response of High Formability Dual Phase Steel. steel research international, 89(4), 1700412
- [15] Bleck, W., & Phiu-On, K. (2005). Microalloying of cold-formable multi phase steel grades. In Materials Science Forum (Vol. 500, pp. 97-114). Trans Tech Publications Ltd
- [16] Bidmeshki, C., Shokuhfar, A., & Abouei, V. (2016). Influence of the heat treatment path on the martensite phase and dry reciprocating wear behavior of dual-phase steels. Metallurgical Research & Technology, 113(2), 203
- [17] Saai, A., Hopperstad, O. S., Granbom, Y., & Lademo, O. G. (2014). Influence of volume fraction and distribution of martensite phase on the strain localization in dual phase steels. Procedia materials science, 3, 900-905
- [18] Gündüz, S. (2009). Effect of chemical composition, martensite volume fraction and tempering on tensile behaviour of dual phase steels. Materials letters, 63(27), 2381-2383
- [19] Sayed, A. A., & Kheirandish, S. (2012). Effect of the tempering temperature on the microstructure and mechanical properties of dual phase steels. Materials Science and Engineering: A, 532, 21-25
- [20] Soomro, I. A., Abro, M. I., & Baloch, M. M. (2018). Effect of intercritical heat treatment on mechanical properties of plain carbon dual phase steel. Mehran University Research Journal of Engineering & Technology, 37(1), 149-158
- [21] Calcagnotto, M., Ponge, D., & Raabe, D. (2012). Microstructure control during fabrication of ultrafine grained dual-phase steel: characterization and effect of intercritical annealing parameters. ISIJ international, 52(5), 874-883
Sonlu Elemanlar Metodu ile Kritikler Arası Tavlamanın Çift Fazlı Çeliğin Özelliklerine Etkisi
Year 2023,
Volume: 27 Issue: 1, 103 - 106, 25.04.2023
Adnan Akman
,
Yağız Akyıldız
,
Rıdvan Yamanoğlu
Abstract
Çift fazlı (DP) çelikler, AHSS kaliteleri arasında otomotiv endüstrisinde yaygın olarak kullanılan bir çelik grubudur. Çarpışma bölgeleri için enerji emilimi ve ağırlık azaltma sunarlar. Günümüzde jantlarda, ön ve arka panellerde kullanılır. DP çeliklerinin mikroyapısı, ferrit ve martenzit fazlarının kombinasyonundan oluşur. Sert martenzit adaları mukavemet sağlarken, sünek ferrit fazı şekillendirilebilirliği sağlar. DP çeliğinin mukavemet seviyesi, mikroyapıdaki martenzit miktarı ile ilgilidir. Martenzit miktarı, kritikler arası tavlama işlemiyle düzenlenebilir. Bu çalışmada Thermo-Calc yazılımı ile St52 çeliğinin termodinamik analizi yapılmıştır. A1 ve A3 sıcaklıkları, sıcaklığa bağlı faz fraksiyonları hesaplanarak belirlenmiştir. Hesaplanan kritik sıcaklıklara (A1 ve A3) göre kritikler arası tavlama işlemi Simheat NxT yazılımı kullanılarak modellenmiştir. Bu modelleme ve simülasyon çalışmasında, kritikler arası tavlama sıcaklığının DP çeliğinin nihai mikroyapısı ve sertliği üzerindeki etkisi araştırılmıştır.
References
- [1] Chen, W., Zhang, Q., Wang, C., Li, Z., Geng, Y., Hong, J., & Cheng, Y. (2022). Environmental sustainability challenges of China’s steel production: Impact-oriented water, carbon and fossil energy footprints assessment. Ecological Indicators, 136, 108660
- [2] Schmitt, J. H., & Iung, T. (2018). New developments of advanced high-strength steels for automotive applications. Comptes Rendus Physique, 19(8), 641-656
- [3] Akyıldız, Y., Öztürk, O. & Simsar, B. (2021). Al-10Si-xMg Alaşımının CALPHAD Metodolojisi ile Termodinamik Karakterizasyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25 (3), 699-704
- [4] Baluch, N., Udin, Z. M., & Abdullah, C. S. (2014). Advanced high strength steel in auto industry: an overview. Engineering, Technology & Applied Science Research, 4(4), 686-689
- [5] Gao, X., Wang, H., Xing, L., Ma, C., Li, Y., Sha, G., & Ren, H. (2021). The synergistic effects of ultrafine grains and nano-size Cu-rich precipitates on the mechanical properties of DP steels. Materials Science and Engineering: A, 805, 140547
- [6] Lai, Q., Bouaziz, O., Gouné, M., Perlade, A., Bréchet, Y., & Pardoen, T. (2015). Microstructure refinement of dual-phase steels with 3.5 wt% Mn: Influence on plastic and fracture behavior. Materials Science and Engineering: A, 638, 78-89
- [7] Jamei, F., Mirzadeh, H., & Zamani, M. (2019). Synergistic effects of holding time at intercritical annealing temperature and initial microstructure on the mechanical properties of dual phase steel. Materials Science and Engineering: A, 750, 125-131
- [8] Aydin H., Zeytin Kazdal H., & Ceylan, K. (2010). Effect of intercritical annealing parameters on dual phase behavior of commercial low-alloyed steels. Journal of Iron and Steel Research International, 17(4), 73-78
- [9] Li, Y., Song, R., Jiang, L., & Zhao, Z. (2019). Strength response of 1200 MPa grade martensite-ferrite dual-phase steel under high strain rates. Scripta Materialia, 164, 21-24
- [10] Calcagnotto, M., Ponge, D., & Raabe, D. (2010). Effect of grain refinement to 1 μm on strength and toughness of dual-phase steels. Materials Science and Engineering: A, 527(29-30), 7832-7840
- [11] Papa Rao, M., Subramanya Sarma, V., & Sankaran, S. (2014). Processing of bimodal grain-sized ultrafine-grained dual phase microalloyed V-Nb steel with 1370 MPa strength and 16 pct uniform elongation through warm rolling and intercritical annealing. Metallurgical and Materials Transactions A, 45(12), 5313-5317
- [12] Kalhor, A., Soleimani, M., Mirzadeh, H., & Uthaisangsuk, V. (2020). A review of recent progress in mechanical and corrosion properties of dual phase steels. Archives of Civil and Mechanical Engineering, 20(3), 1-14
- [13] Tasan, C. C., Diehl, M., Yan, D., Bechtold, M., Roters, F., Schemmann, L., & Raabe, D. (2015). An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design. Annual Review of Materials Research, 45, 391-431
- [14] Maleki, M., Mirzadeh, H., & Zamani, M. (2018). Effect of Intercritical Annealing on Mechanical Properties and Work‐Hardening Response of High Formability Dual Phase Steel. steel research international, 89(4), 1700412
- [15] Bleck, W., & Phiu-On, K. (2005). Microalloying of cold-formable multi phase steel grades. In Materials Science Forum (Vol. 500, pp. 97-114). Trans Tech Publications Ltd
- [16] Bidmeshki, C., Shokuhfar, A., & Abouei, V. (2016). Influence of the heat treatment path on the martensite phase and dry reciprocating wear behavior of dual-phase steels. Metallurgical Research & Technology, 113(2), 203
- [17] Saai, A., Hopperstad, O. S., Granbom, Y., & Lademo, O. G. (2014). Influence of volume fraction and distribution of martensite phase on the strain localization in dual phase steels. Procedia materials science, 3, 900-905
- [18] Gündüz, S. (2009). Effect of chemical composition, martensite volume fraction and tempering on tensile behaviour of dual phase steels. Materials letters, 63(27), 2381-2383
- [19] Sayed, A. A., & Kheirandish, S. (2012). Effect of the tempering temperature on the microstructure and mechanical properties of dual phase steels. Materials Science and Engineering: A, 532, 21-25
- [20] Soomro, I. A., Abro, M. I., & Baloch, M. M. (2018). Effect of intercritical heat treatment on mechanical properties of plain carbon dual phase steel. Mehran University Research Journal of Engineering & Technology, 37(1), 149-158
- [21] Calcagnotto, M., Ponge, D., & Raabe, D. (2012). Microstructure control during fabrication of ultrafine grained dual-phase steel: characterization and effect of intercritical annealing parameters. ISIJ international, 52(5), 874-883