Research Article
BibTex RIS Cite

Determination and Mathematical Modeling of Drying Kinetics of Avocado Slices by Tunnel Type Solar Drying and Microwave Drying Method

Year 2023, Volume: 27 Issue: 2, 305 - 312, 25.08.2023

Abstract

Within the scope of this study, drying studies of avocado fruit using a solar tunnel dryer were experimentally carried out in Isparta conditions. At the same time, avocado slices were dried in a laboratory-dimensioned household microwave dryer. In the experiments, avocado fruits were studied at 4 mm slice thickness. Also, time dependent moisture content, drying rate and drying characteristics of avocado slices are reported. Avocado fruits with an initial moisture content of 71.51±0.35% (w.b.) were dried both by solar drying method and by microwave drying method until their moisture content was 14.23±0.16% (w.b.). Drying processes took approximately 3 days for avocados with 4 mm slice thickness in the solar powered system. In the microwave dryer, dehydration times were founded as 76, 34 and 14 minutes, respectively, at 180W, 360W and 540W microwave powers. The drying data obtained from the experiments were performed to 8 different model equations. While determining the best model equation, coefficient of determination (R2) should be the largest, standard error of prediction (SEE), mean square error (RMSE) and chi-square (χ2) should be minimum. In both drying methods, the most suitable dehydration model equation was founded as the Alibaş model equation.

References

  • [1] Güzel, S. 2018. The effect of ultrasonic, ultraturrax and microwave pretreatment applied to oils obtained from different avacado species on oil yield and oil features. Erciyes University, Graduate School of Natural and Applied Sciences,109 p, Kayseri.
  • [2] Demircan, B., Velioğlu, Y. S. 2021. Avocado: Composition and Effects on Health. Academic Food Journal, 19(3), 309-324.
  • [3] Dreher, M. L., Davenport, A. J. 2013. Hass avocado composition and potential health effects. Critical Reviews in Food Science and Nutrition, 53, 738- 750.
  • [4] Yahia, E. M., Woolf, A. B. 2011. Avocado (Persea american a Mill.). In Postharvest Biology and Technology of Tropical and Subtropical Fruits, Edited by E. Yahia, Woodhead Publishing, UK, 125-186.
  • [5] Saavedra, J., Córdova, A., Navarro, R., DíazCalderón, P., Fuentealba, C., Astudillo-Castro, C., Galvez, L. 2017. Industrial avocado waste: Functional compounds preservation by convective drying process. Journal of Food Engineering, 198, 81-90.
  • [6] Nguyen, T. K., Mondor, M. Ratti, C. 2018. Shrinkage of cellular food during air drying. Journal of Food Engineering, 230, 8-17.
  • [7] Alibas, I., Zia, M. P., Yilmaz, A., Asik, B. B. 2020. Drying kinetics and quality characteristics of green apple peel (Mallus communis L. var. “Granny Smith”) used in herbal tea production. Journal of Food Processing and Preservation, 44(2), e14332.
  • [8] Mulato, S., Atmawinata, O., Yusianto, Handaka, Pass, T., Muehlbauer, W., Esper, A. 1999. Development of a solar cocoa processing center for cooperative use in Indonesia, The Planter, 75(875), 57-74.
  • [9] Lenaerts, S., Van Der Borght, M., Callens, A., Van Campenhout, L. 2018. Suitability of microwave drying for mealworms (Tenebrio molitor) as alternative to freze drying: impact on nutritional quality and colour. Food Chemistry, 254, 129- 136.
  • [10] Naderinezhad S., Etesami N., Najafabady A. P. Falavarjani M. G. 2016. Mathematical modeling of drying of potato slices in a forced convective dryer based on important parameters. Food Science and Nutrition, 4(1): 110–118.
  • [11] Sacılık, K., Keskin, R., Elicin, A. K. 2006. Mathematical modelling of solar tunnel drying of thin layer organic tomato. Journal of Food Engineering, 73, 231-238.
  • [12] Schirmer, P., Janjai, S., Esper, A., Smitabhindu, R., Mühlbauer, W. 1996. Experimental investigation of the performance of the solar tunnel dryer for drying bananas. Renewable Energy, 7(2), 119- 129.
  • [13] Eltawil, M. A., Azam, M. M., Alghannam, A. O. 2018. Energy analysis of hybrid solar tunnel dryer with PV system and solar collector for drying mint (Mentha viridis). Journal of Cleaner Production. 181, 352-364.
  • [14] Rathore, N. S., Panwar, N. L. 2010. Experimental studies on hemi cylindrical walk-in type solar tunnel dryer for grape drying. Applied Energy, 87(8), 2764-2767.
  • [15] Gürlek, G., Özbalta, N., Güngör, A. 2009. Solar tunnel drying characteristics and mathematical modelling of tomato. Journal of Thermal Science and Technology, 29(1), 15-23.
  • [16] Eliçin, A. K., Saçılık, K. 2005. An experimental study for solar tunnel drying of apple. The Journal of Agricultural Sciences, 11(2), 207-211.
  • [17] Tunckal C., Doymaz, İ. 2020. Performance analysis and mathematical modelling of banana slices in a heat pump drying system. Renewable Energy, 150, 918-923.
  • [18] Kipcak, A.S. 2017. Microwave drying kinetics of mussels mytilus edulis. Res. Chem. Intermed. 43:1429–1445. doi: 10.1007/s11164-016- 2707-4.
  • [19] Kipcak, A. S., Doymaz, İ. 2020 Mathematical modeling and drying characteristics investigation of black mulberry dried by microwave method, International Journal of Fruit Science, 20(3), 1222-1233.
  • [20] Doymaz I., Kipcak A.S., Piskin S. 2015. Microwave drying of green bean slices: drying kinetics and physical quality. Czech J. Food Sci., 33, 367-376.
  • [21] Falade, K., Ogunwolu, O. S. 2014. Modeling of drying patterns of fresh and osmotically pretreated cooking banana and plantain slices. Journal of Food Processing and Preservation 38: 373–388.
  • [22] Westerman, P. W., White, G. M., Ross, I. J. (1973) Relative Humidity Effect on the High temperature drying of shelled corn. Transactions of the ASAE, 16, 1136-1139.
  • [23] Aghbashlo, M., Kianmehr, M. H., Khani, S., Ghasemi, M. 2011. Modelling the carrot thinlayer drying in a semiindustrial continuous band dryer. Czech Journal of Food Sciences, 29, 528– 538.
  • [24] Chinenye, N. M., Ogunlowo, A. S., Olukunle, O. J. 2010. Cocoa bean (Theobroma cacao L.) drying kinetics. Chilean Journal of Agricultural Research, 70,633–639.
  • [25] Akpinar, A. K., Bicer, Y. 2008. Mathematical modeling of thin layer drying process of long green pepper in solar dryer and under open sun. Energy Conversion and Management, 49, 1367– 1375.
  • [26] Yaldız, O., Ertekin, C. 2007. Thin-layer solar drying of some vegetables. Drying Technology, 19(3–4), 583–97.
  • [27] Midilli, A., Kucuk, H., Yapar, Z. 2002. A new model for single layer drying. Drying Technology, 20(7), 1503-1513.
  • [28] Alibas, I. 2012. Microwave drying of grapevine (Vitis vinifera L.) leaves and determination of some quality parameters. Journal of Agricultural Sciences, 18, 43-53.
  • [29] Alibas, I. 2012. Drying of thin layer mango slices with microwave technique. Anadolu J Agr Sci, 30, 99-109.
  • [30] Çelen İ. H., Çelen, S., Moralar, A., Buluş, H. N., Önler, E. 2015. Experımental Investigation of Potato Dryıng in Mıcrowave Belt Dryer. Electronic Journal of Vocational Colleges-Special Issue: The Latest Trends in Engineering, 5(4), 57–69.
  • [31] Demiray, E., Tulek, Y. 2017. The effect of pretreatments on air drying characteristics of persimmon. Heat and Mass Transfer, 53, 99-106.
  • [32] Akpınar E., Demirci, S. 2018. Mathematical models to determıne of thın layer dryıng kınetıc of gınger slıces. European Journal of Technique. 8(2), 110-123.
  • [33] Alibaş, İ. 2014. Mathematical modeling of microwave dried celery leaves and determination of the effective moisture diffusivities and activation energy. Food Sci. Technol, Campinas, 34(2), 394-401.
  • [34] Togrul, I. T., Pehlivan, D. 2004. Modelling of thin layer drying kinetics of some fruits under openair sun drying process. Journal of Food Engineering, 65, 413-425.
  • [35] Alibaş, İ. 2012. Microwave drying of strawberry slices and the determination of the some quality parameters. Journal of Agricultural Machinery Science, 8(2), 161-170.
  • [36] Kucuk, H., A. Midilli, A. Kilic, and I. Dincer. 2014. A review on thin-layer drying-curve equations. Drying Technol, 32(7), 757–773.
  • [37] Doymaz, İ. 2009. Thın-layer dryıng of spınach leaves in a convectıve dryer. Journal of Food Process Engineering. 32(1), 112-125

Güneş Enerjili Tünel Tipi Kurutucu ve Mikrodalga Kurutma Yöntemi ile Avokado Dilimlerinin Kuruma Kinetiğinin İncelenmesi ve Matematiksel Modellenmesi

Year 2023, Volume: 27 Issue: 2, 305 - 312, 25.08.2023

Abstract

Bu çalışma kapsamında, tünel tipi güneş enerjili kurutucu ile Isparta şartlarında avokadonun kurutma denemeleri deneysel bir şekilde gerçekleştirilmiştir. Ayrıca
avokado dilimleri ev tipi mikrodalga destekli konvektif kurutucuda kurutulmuştur. Denemelerde avokado meyveleri 4 mm dilim kalınlıklarında çalışılmıştır. Bunlara
ek olarak, avokado dilimlerinin zamana bağlı olarak nem içeriği, kuruma hızı ile kuruma karakteristikleri rapor edilmiştir. İlk nem içeriği %71.51±0.35 (y.b) olan
avokado meyveleri, hem tünel tipi güneş enerjili kurutma yöntemi ile hem de mikrodalga kurutma yöntemi ile nem içeriği %14.23±0.16 (y.b) olana kadar
kurutulmuştur. 4 mm dilim kalınlığına sahip avokadoların güneş enerjili tünel tipi kurutma sisteminde kurutma işlemleri yaklaşık 3 gün sürmüştür. Mikrodalga
kurutucuda kurutma süreleri 180W, 360W ve 540W mikrodalga güçlerinde sırasıyla 76, 34 ve 14 dakika olarak bulunmuştur. Denemelerden elde edilen
kurutma verileri, 8 farklı matematiksel model eşitliğe uygulanmıştır. En iyi model eşitliği belirlerken, R2’nin en büyük, SEE, RMSE ve χ2'nin en küçük olması
gerekmektedir. Her iki kurutma yönteminde de, en uygun kuruma modeli, Alibaş model eşitliği olarak bulunmuştur.

References

  • [1] Güzel, S. 2018. The effect of ultrasonic, ultraturrax and microwave pretreatment applied to oils obtained from different avacado species on oil yield and oil features. Erciyes University, Graduate School of Natural and Applied Sciences,109 p, Kayseri.
  • [2] Demircan, B., Velioğlu, Y. S. 2021. Avocado: Composition and Effects on Health. Academic Food Journal, 19(3), 309-324.
  • [3] Dreher, M. L., Davenport, A. J. 2013. Hass avocado composition and potential health effects. Critical Reviews in Food Science and Nutrition, 53, 738- 750.
  • [4] Yahia, E. M., Woolf, A. B. 2011. Avocado (Persea american a Mill.). In Postharvest Biology and Technology of Tropical and Subtropical Fruits, Edited by E. Yahia, Woodhead Publishing, UK, 125-186.
  • [5] Saavedra, J., Córdova, A., Navarro, R., DíazCalderón, P., Fuentealba, C., Astudillo-Castro, C., Galvez, L. 2017. Industrial avocado waste: Functional compounds preservation by convective drying process. Journal of Food Engineering, 198, 81-90.
  • [6] Nguyen, T. K., Mondor, M. Ratti, C. 2018. Shrinkage of cellular food during air drying. Journal of Food Engineering, 230, 8-17.
  • [7] Alibas, I., Zia, M. P., Yilmaz, A., Asik, B. B. 2020. Drying kinetics and quality characteristics of green apple peel (Mallus communis L. var. “Granny Smith”) used in herbal tea production. Journal of Food Processing and Preservation, 44(2), e14332.
  • [8] Mulato, S., Atmawinata, O., Yusianto, Handaka, Pass, T., Muehlbauer, W., Esper, A. 1999. Development of a solar cocoa processing center for cooperative use in Indonesia, The Planter, 75(875), 57-74.
  • [9] Lenaerts, S., Van Der Borght, M., Callens, A., Van Campenhout, L. 2018. Suitability of microwave drying for mealworms (Tenebrio molitor) as alternative to freze drying: impact on nutritional quality and colour. Food Chemistry, 254, 129- 136.
  • [10] Naderinezhad S., Etesami N., Najafabady A. P. Falavarjani M. G. 2016. Mathematical modeling of drying of potato slices in a forced convective dryer based on important parameters. Food Science and Nutrition, 4(1): 110–118.
  • [11] Sacılık, K., Keskin, R., Elicin, A. K. 2006. Mathematical modelling of solar tunnel drying of thin layer organic tomato. Journal of Food Engineering, 73, 231-238.
  • [12] Schirmer, P., Janjai, S., Esper, A., Smitabhindu, R., Mühlbauer, W. 1996. Experimental investigation of the performance of the solar tunnel dryer for drying bananas. Renewable Energy, 7(2), 119- 129.
  • [13] Eltawil, M. A., Azam, M. M., Alghannam, A. O. 2018. Energy analysis of hybrid solar tunnel dryer with PV system and solar collector for drying mint (Mentha viridis). Journal of Cleaner Production. 181, 352-364.
  • [14] Rathore, N. S., Panwar, N. L. 2010. Experimental studies on hemi cylindrical walk-in type solar tunnel dryer for grape drying. Applied Energy, 87(8), 2764-2767.
  • [15] Gürlek, G., Özbalta, N., Güngör, A. 2009. Solar tunnel drying characteristics and mathematical modelling of tomato. Journal of Thermal Science and Technology, 29(1), 15-23.
  • [16] Eliçin, A. K., Saçılık, K. 2005. An experimental study for solar tunnel drying of apple. The Journal of Agricultural Sciences, 11(2), 207-211.
  • [17] Tunckal C., Doymaz, İ. 2020. Performance analysis and mathematical modelling of banana slices in a heat pump drying system. Renewable Energy, 150, 918-923.
  • [18] Kipcak, A.S. 2017. Microwave drying kinetics of mussels mytilus edulis. Res. Chem. Intermed. 43:1429–1445. doi: 10.1007/s11164-016- 2707-4.
  • [19] Kipcak, A. S., Doymaz, İ. 2020 Mathematical modeling and drying characteristics investigation of black mulberry dried by microwave method, International Journal of Fruit Science, 20(3), 1222-1233.
  • [20] Doymaz I., Kipcak A.S., Piskin S. 2015. Microwave drying of green bean slices: drying kinetics and physical quality. Czech J. Food Sci., 33, 367-376.
  • [21] Falade, K., Ogunwolu, O. S. 2014. Modeling of drying patterns of fresh and osmotically pretreated cooking banana and plantain slices. Journal of Food Processing and Preservation 38: 373–388.
  • [22] Westerman, P. W., White, G. M., Ross, I. J. (1973) Relative Humidity Effect on the High temperature drying of shelled corn. Transactions of the ASAE, 16, 1136-1139.
  • [23] Aghbashlo, M., Kianmehr, M. H., Khani, S., Ghasemi, M. 2011. Modelling the carrot thinlayer drying in a semiindustrial continuous band dryer. Czech Journal of Food Sciences, 29, 528– 538.
  • [24] Chinenye, N. M., Ogunlowo, A. S., Olukunle, O. J. 2010. Cocoa bean (Theobroma cacao L.) drying kinetics. Chilean Journal of Agricultural Research, 70,633–639.
  • [25] Akpinar, A. K., Bicer, Y. 2008. Mathematical modeling of thin layer drying process of long green pepper in solar dryer and under open sun. Energy Conversion and Management, 49, 1367– 1375.
  • [26] Yaldız, O., Ertekin, C. 2007. Thin-layer solar drying of some vegetables. Drying Technology, 19(3–4), 583–97.
  • [27] Midilli, A., Kucuk, H., Yapar, Z. 2002. A new model for single layer drying. Drying Technology, 20(7), 1503-1513.
  • [28] Alibas, I. 2012. Microwave drying of grapevine (Vitis vinifera L.) leaves and determination of some quality parameters. Journal of Agricultural Sciences, 18, 43-53.
  • [29] Alibas, I. 2012. Drying of thin layer mango slices with microwave technique. Anadolu J Agr Sci, 30, 99-109.
  • [30] Çelen İ. H., Çelen, S., Moralar, A., Buluş, H. N., Önler, E. 2015. Experımental Investigation of Potato Dryıng in Mıcrowave Belt Dryer. Electronic Journal of Vocational Colleges-Special Issue: The Latest Trends in Engineering, 5(4), 57–69.
  • [31] Demiray, E., Tulek, Y. 2017. The effect of pretreatments on air drying characteristics of persimmon. Heat and Mass Transfer, 53, 99-106.
  • [32] Akpınar E., Demirci, S. 2018. Mathematical models to determıne of thın layer dryıng kınetıc of gınger slıces. European Journal of Technique. 8(2), 110-123.
  • [33] Alibaş, İ. 2014. Mathematical modeling of microwave dried celery leaves and determination of the effective moisture diffusivities and activation energy. Food Sci. Technol, Campinas, 34(2), 394-401.
  • [34] Togrul, I. T., Pehlivan, D. 2004. Modelling of thin layer drying kinetics of some fruits under openair sun drying process. Journal of Food Engineering, 65, 413-425.
  • [35] Alibaş, İ. 2012. Microwave drying of strawberry slices and the determination of the some quality parameters. Journal of Agricultural Machinery Science, 8(2), 161-170.
  • [36] Kucuk, H., A. Midilli, A. Kilic, and I. Dincer. 2014. A review on thin-layer drying-curve equations. Drying Technol, 32(7), 757–773.
  • [37] Doymaz, İ. 2009. Thın-layer dryıng of spınach leaves in a convectıve dryer. Journal of Food Process Engineering. 32(1), 112-125
There are 37 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Sevil Karaaslan 0000-0002-2289-8005

Kamil Ekinci 0000-0002-7083-5199

Publication Date August 25, 2023
Published in Issue Year 2023 Volume: 27 Issue: 2

Cite

APA Karaaslan, S., & Ekinci, K. (2023). Determination and Mathematical Modeling of Drying Kinetics of Avocado Slices by Tunnel Type Solar Drying and Microwave Drying Method. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(2), 305-312. https://doi.org/10.19113/sdufenbed.1237480
AMA Karaaslan S, Ekinci K. Determination and Mathematical Modeling of Drying Kinetics of Avocado Slices by Tunnel Type Solar Drying and Microwave Drying Method. J. Nat. Appl. Sci. August 2023;27(2):305-312. doi:10.19113/sdufenbed.1237480
Chicago Karaaslan, Sevil, and Kamil Ekinci. “Determination and Mathematical Modeling of Drying Kinetics of Avocado Slices by Tunnel Type Solar Drying and Microwave Drying Method”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27, no. 2 (August 2023): 305-12. https://doi.org/10.19113/sdufenbed.1237480.
EndNote Karaaslan S, Ekinci K (August 1, 2023) Determination and Mathematical Modeling of Drying Kinetics of Avocado Slices by Tunnel Type Solar Drying and Microwave Drying Method. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27 2 305–312.
IEEE S. Karaaslan and K. Ekinci, “Determination and Mathematical Modeling of Drying Kinetics of Avocado Slices by Tunnel Type Solar Drying and Microwave Drying Method”, J. Nat. Appl. Sci., vol. 27, no. 2, pp. 305–312, 2023, doi: 10.19113/sdufenbed.1237480.
ISNAD Karaaslan, Sevil - Ekinci, Kamil. “Determination and Mathematical Modeling of Drying Kinetics of Avocado Slices by Tunnel Type Solar Drying and Microwave Drying Method”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27/2 (August 2023), 305-312. https://doi.org/10.19113/sdufenbed.1237480.
JAMA Karaaslan S, Ekinci K. Determination and Mathematical Modeling of Drying Kinetics of Avocado Slices by Tunnel Type Solar Drying and Microwave Drying Method. J. Nat. Appl. Sci. 2023;27:305–312.
MLA Karaaslan, Sevil and Kamil Ekinci. “Determination and Mathematical Modeling of Drying Kinetics of Avocado Slices by Tunnel Type Solar Drying and Microwave Drying Method”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 27, no. 2, 2023, pp. 305-12, doi:10.19113/sdufenbed.1237480.
Vancouver Karaaslan S, Ekinci K. Determination and Mathematical Modeling of Drying Kinetics of Avocado Slices by Tunnel Type Solar Drying and Microwave Drying Method. J. Nat. Appl. Sci. 2023;27(2):305-12.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.