Research Article
BibTex RIS Cite

Characterization and Optoelectronic Effects of Iridium Doped ZnO Thin Films for Heterojunction Applications

Year 2024, Volume: 28 Issue: 2, 96 - 104, 23.08.2024
https://doi.org/10.19113/sdufenbed.1345637

Abstract

In this investigation, the sol-gel spin coating technique was utilized to fabricate ZnO and ZnO films doped with Iridium (Ir) onto p-Si substrates. The objective was to analyze their optical and morphological characteristics and assess their potential for heterojunction applications. Morphological inspection and optical evaluation were carried out by Atomic Force Microscopy (AFM) and Ultraviolet-visible (UV-VIS) studies, respectively. With the incorporation of Ir, the optical band gap of ZnO films reduced from 3.21 eV to 3.08 eV. Analysis of AFM images revealed that Ir substitution led to a reduction in the roughness of the surface of the fabricated films. The optoelectrical features of the heterojunction structures were examined under varying illumination levels and in dark conditions. Upon evaluating the optoelectrical characteristics of the produced diodes, it was observed that the ideality factor (n) and the barrier height declined, while series resistance (Rs) increased with the introduction of Ir. These findings emphasize that the inclusion of Ir into the ZnO structure has a discernible impact on optical parameters.

References

  • Zhang, T., Li, M., Chen, J., Wang, Y., Miao, L., Lu, Y., He, Y., 2022. Materials Science & Engineering R 147 100661.
  • Sharma, P., Hasan, M. R., Mehto, N. K., Deepak, Bishoyi, A., Narang, J., 2022. Sensors International 3, 100182.
  • Atay, F., Gultepe, O., 2022. Applied Physics A 128:99.
  • Agrohiya, S., Dahiya, S., Goyal, P. K., Rawal, I., Ohlan, A., Punia, R., and Maan, A. S., 2022. ECS Sensors Plus, 1 043601.
  • Mahajan, L.M., 2023. Materials Today: Proceedings 73 464–467.
  • Khan, A. R., Ramzan, M., Imran, M., Zubair, M., Shahab, S., Ahmed, S. J., Ferreira, F. and Iqbal, M. F., 2023. Coatings, 13(1), 34.
  • Zubkins, M., Kalendarev, R., Gabrusenoks, J., Plaude, A., Zitolo, A., Anspoks, A., Pudzs, K., Vilnis, K., Azens, A., J. Purans, 2017. Thin Solid Films 636 694–701.
  • Babajani, N., Jamshidi, S., 2019. Journal of Alloys and Compounds 782 533-544.
  • Dhanalakshmi, M., Saravanakumar, K., Lakshmi Prabavathi, S., Muthuraj, V., 2020. Inorganic Chemistry Communications 111 107601.
  • Dhyani, A. M., Nautiyal, A., Kumar, N., Rathi, S., Kumar, D., 2023. Materials Today: Proceedings 73 195–199.
  • Joshi B. C., and Chaudhri, A. K., 2022. ACS Omega, 7, 21877−21881.
  • Caglar, Y., Ilican, S., Caglar, M., Yakuphanoglu, F., 2010. J Sol-Gel Sci Technol 53:372–377.
  • Yadav, A. B., Rawat, G., Sannakashappanavar, B. S., 2022. Materials Today Communications 31 103751.
  • Sengun, P., Tumerkan Kesim, M., Caglar, M., Savaci, U., Turan, S., Sahin, İ., Suvaci, E., 2020. Powder Technology 374 214–222.
  • Yakuphanoglu, F., Ilican, S., Caglar, M., Caglar, Y., 2010. Superlattices and Microstructures 47 732743.
  • Elsheikh, N. Y., Battisha, I. K., Arais, A. A., Shams, M.S. 2022. Egypt. J. Chem. Vol. 65, No. SI:13B pp. 949 – 957.
  • Ţalu, S., Boudour, S., Bouchama, I., Astinchap, B., Ghanbaripour, H., Saeed Akhtar, M., Zahra, S., 2022. Microsc Res Tech. 85:1213–1223.
  • Zekry, A., 2019. Electronic Devices with Physical Insight, Ain Shams University, LAP LAMBERT Academic Publishing, May 16.
  • Polat, O., Caglar, M., Coskun, F.M., Coskun, M., Caglar, Y., Turut, A., 2020. Vacuum 173, 109124.
  • Polat, O., Coskun, F.M., Yildirim, Y. et al. 2023. Appl. Phys. A 129, 198.
  • Kubelka, P., Munk, F., 1931. A contribution to the optics of pigments. Z. Technol. Phys. 12, 593–599.
  • Chi, P.W., Wei, D.H., Wu, S.H., Chen, Y.Y., Yao, Y.D., 2015. RSC Adv., 5 pp. 96705-96713.
  • Chao, C.H., Chi, P.W., Wei, D.H., 2016. J. Phys. Chem. C, 120, pp. 8210-8219.
  • Sze, S.M., 1981. Physics of Semiconductor Devices. 3rd. WILEY. 578s.
  • Norde, H., 1979. J. Appl. Phys. 50 5052.
  • Li, Y., Li, Y., Zhang, J., Tong, T., Ye, W., 2018. J. Phys. D. Appl. Phys. 51, 095104.
  • Polat, O., Coskun, M., Efeoglu, H., Caglar, M., Coskun, F.M., Caglar, Y., Turut, A., 2021. J. Phys. Condens. Matter 33, 035704.
  • Ilican, S., Caglar, M., Aksoy, S., Caglar, Y., 2016. J. Nanomater. 2016, 6729032.
  • Karatas¸, S., Yildirim, N., Türüt, A., 2013. Superlattice. Microst. 64 483–494.
  • Aksoy Pehlivanoglu, S., 2021. Physica B: Condensed Matter Volume 603, 15 February, 412482.
  • Giri, P., Chakrabarti, P., 2016. Superlattice. Microst. 93 248–260.
  • Ko, C.J., Lin, Y.K., Chen, F.C., Chu, C.W., 2007. Appl. Phys. Lett. 90, 063509.
  • Xu, X., Shukla, S., Liu, Y., Yue, B., Bullock, J., Su, L., Li, Y., Javey, A., Fang, X., Ager, J.W., 2018. Phys. Status Solidi Rapid Res. Lett. 12 1700381.
  • Postica, V., Hoppe, M., Grottrup, J., Hayes, P., Robisch, V., Smazna, D., Adelung, R., Viana, B., Aschehoug, P., Pauporte, T., Lupan, O., 2017. Solid State Sci. 71 75–86.
  • Bube, R.H., 1960. Photoconductivity of Solids, Wiley, New York.
  • Khusayfan, N.M., 2016. J. Alloys Compd. 666 501–506.
  • Mekki, A., Dere, A., Mensah-Darkwa, K., Al-Ghamdi, A., Gupta, R.K., Harrabi, K., Farooq, W. A., El-Tantawy, F., Yakuphanoglu, F., 2016. Synth. Met. 217 43–56.
  • Kazim, S., Ali, V., Zulfequar, M., Mazharul Haq, M., Husain, M., 2007. Phys. B Condens. Matter 393 310–315.
  • Amiruddin, R., Santhosh Kumar, M.C., 2017. Nanosci. Nanotechnol. Lett. 9 489–495.
  • Tan, L., Curtis, M.D., Francis, A.H., 2003. Chem. Mater. 15 2272–2279

Heteroeklem Uygulamaları için İridyum Katkılı ZnO İnce Filmlerin Karakterizasyonu ve Optoelektronik Etkileri

Year 2024, Volume: 28 Issue: 2, 96 - 104, 23.08.2024
https://doi.org/10.19113/sdufenbed.1345637

Abstract

Bu çalışmada, İridyum (Ir) katkılı ZnO ve ZnO filmleri, sol-jel spin kaplama tekniği kullanılarak p-Si alttaşlar üzerine kaplanmıştır. Amaç, optik ve morfolojik özelliklerini analiz etmek ve heteroeklem uygulamaları için potansiyellerini değerlendirmekti. Morfolojik inceleme ve optik değerlendirme sırasıyla Atomik Kuvvet Mikroskobu (AFM) ve Ultraviyole-görünür (UV-VIS) çalışmaları ile gerçekleştirilmiştir. Ir'nin katkılanmasıyla, ZnO filmlerin optik bant aralığı 3,21 eV'den 3,08 eV'ye düşürüldü. AFM görüntülerinin analizi, Ir ikamesinin üretilen filmlerin yüzey pürüzlülüğünde bir azalmaya yol açtığını ortaya çıkardı. Heteroeklem yapılarının optoelektriksel özellikleri, değişen aydınlatma şiddetleri altında ve karanlık koşullarda incelenmiştir. Üretilen diyotların optoelektrik özellikleri değerlendirildiğinde idealite faktörü (n) ve bariyer yüksekliğinin düştüğü, Ir'nin devreye girmesiyle seri direncin (Rs) arttığı gözlenmiştir. Bu bulgular, Ir'nin ZnO yapısına dahil edilmesinin optik parametreler üzerinde fark edilebilir bir etkiye sahip olduğunu vurgulamaktadır.

References

  • Zhang, T., Li, M., Chen, J., Wang, Y., Miao, L., Lu, Y., He, Y., 2022. Materials Science & Engineering R 147 100661.
  • Sharma, P., Hasan, M. R., Mehto, N. K., Deepak, Bishoyi, A., Narang, J., 2022. Sensors International 3, 100182.
  • Atay, F., Gultepe, O., 2022. Applied Physics A 128:99.
  • Agrohiya, S., Dahiya, S., Goyal, P. K., Rawal, I., Ohlan, A., Punia, R., and Maan, A. S., 2022. ECS Sensors Plus, 1 043601.
  • Mahajan, L.M., 2023. Materials Today: Proceedings 73 464–467.
  • Khan, A. R., Ramzan, M., Imran, M., Zubair, M., Shahab, S., Ahmed, S. J., Ferreira, F. and Iqbal, M. F., 2023. Coatings, 13(1), 34.
  • Zubkins, M., Kalendarev, R., Gabrusenoks, J., Plaude, A., Zitolo, A., Anspoks, A., Pudzs, K., Vilnis, K., Azens, A., J. Purans, 2017. Thin Solid Films 636 694–701.
  • Babajani, N., Jamshidi, S., 2019. Journal of Alloys and Compounds 782 533-544.
  • Dhanalakshmi, M., Saravanakumar, K., Lakshmi Prabavathi, S., Muthuraj, V., 2020. Inorganic Chemistry Communications 111 107601.
  • Dhyani, A. M., Nautiyal, A., Kumar, N., Rathi, S., Kumar, D., 2023. Materials Today: Proceedings 73 195–199.
  • Joshi B. C., and Chaudhri, A. K., 2022. ACS Omega, 7, 21877−21881.
  • Caglar, Y., Ilican, S., Caglar, M., Yakuphanoglu, F., 2010. J Sol-Gel Sci Technol 53:372–377.
  • Yadav, A. B., Rawat, G., Sannakashappanavar, B. S., 2022. Materials Today Communications 31 103751.
  • Sengun, P., Tumerkan Kesim, M., Caglar, M., Savaci, U., Turan, S., Sahin, İ., Suvaci, E., 2020. Powder Technology 374 214–222.
  • Yakuphanoglu, F., Ilican, S., Caglar, M., Caglar, Y., 2010. Superlattices and Microstructures 47 732743.
  • Elsheikh, N. Y., Battisha, I. K., Arais, A. A., Shams, M.S. 2022. Egypt. J. Chem. Vol. 65, No. SI:13B pp. 949 – 957.
  • Ţalu, S., Boudour, S., Bouchama, I., Astinchap, B., Ghanbaripour, H., Saeed Akhtar, M., Zahra, S., 2022. Microsc Res Tech. 85:1213–1223.
  • Zekry, A., 2019. Electronic Devices with Physical Insight, Ain Shams University, LAP LAMBERT Academic Publishing, May 16.
  • Polat, O., Caglar, M., Coskun, F.M., Coskun, M., Caglar, Y., Turut, A., 2020. Vacuum 173, 109124.
  • Polat, O., Coskun, F.M., Yildirim, Y. et al. 2023. Appl. Phys. A 129, 198.
  • Kubelka, P., Munk, F., 1931. A contribution to the optics of pigments. Z. Technol. Phys. 12, 593–599.
  • Chi, P.W., Wei, D.H., Wu, S.H., Chen, Y.Y., Yao, Y.D., 2015. RSC Adv., 5 pp. 96705-96713.
  • Chao, C.H., Chi, P.W., Wei, D.H., 2016. J. Phys. Chem. C, 120, pp. 8210-8219.
  • Sze, S.M., 1981. Physics of Semiconductor Devices. 3rd. WILEY. 578s.
  • Norde, H., 1979. J. Appl. Phys. 50 5052.
  • Li, Y., Li, Y., Zhang, J., Tong, T., Ye, W., 2018. J. Phys. D. Appl. Phys. 51, 095104.
  • Polat, O., Coskun, M., Efeoglu, H., Caglar, M., Coskun, F.M., Caglar, Y., Turut, A., 2021. J. Phys. Condens. Matter 33, 035704.
  • Ilican, S., Caglar, M., Aksoy, S., Caglar, Y., 2016. J. Nanomater. 2016, 6729032.
  • Karatas¸, S., Yildirim, N., Türüt, A., 2013. Superlattice. Microst. 64 483–494.
  • Aksoy Pehlivanoglu, S., 2021. Physica B: Condensed Matter Volume 603, 15 February, 412482.
  • Giri, P., Chakrabarti, P., 2016. Superlattice. Microst. 93 248–260.
  • Ko, C.J., Lin, Y.K., Chen, F.C., Chu, C.W., 2007. Appl. Phys. Lett. 90, 063509.
  • Xu, X., Shukla, S., Liu, Y., Yue, B., Bullock, J., Su, L., Li, Y., Javey, A., Fang, X., Ager, J.W., 2018. Phys. Status Solidi Rapid Res. Lett. 12 1700381.
  • Postica, V., Hoppe, M., Grottrup, J., Hayes, P., Robisch, V., Smazna, D., Adelung, R., Viana, B., Aschehoug, P., Pauporte, T., Lupan, O., 2017. Solid State Sci. 71 75–86.
  • Bube, R.H., 1960. Photoconductivity of Solids, Wiley, New York.
  • Khusayfan, N.M., 2016. J. Alloys Compd. 666 501–506.
  • Mekki, A., Dere, A., Mensah-Darkwa, K., Al-Ghamdi, A., Gupta, R.K., Harrabi, K., Farooq, W. A., El-Tantawy, F., Yakuphanoglu, F., 2016. Synth. Met. 217 43–56.
  • Kazim, S., Ali, V., Zulfequar, M., Mazharul Haq, M., Husain, M., 2007. Phys. B Condens. Matter 393 310–315.
  • Amiruddin, R., Santhosh Kumar, M.C., 2017. Nanosci. Nanotechnol. Lett. 9 489–495.
  • Tan, L., Curtis, M.D., Francis, A.H., 2003. Chem. Mater. 15 2272–2279
There are 40 citations in total.

Details

Primary Language English
Subjects Electronic, Optics and Magnetic Materials, Material Characterization
Journal Section Articles
Authors

Seval Aksoy Pehlivanoglu 0000-0003-3660-4765

Özgür Polat 0000-0002-7410-1272

Publication Date August 23, 2024
Published in Issue Year 2024 Volume: 28 Issue: 2

Cite

APA Aksoy Pehlivanoglu, S., & Polat, Ö. (2024). Characterization and Optoelectronic Effects of Iridium Doped ZnO Thin Films for Heterojunction Applications. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(2), 96-104. https://doi.org/10.19113/sdufenbed.1345637
AMA Aksoy Pehlivanoglu S, Polat Ö. Characterization and Optoelectronic Effects of Iridium Doped ZnO Thin Films for Heterojunction Applications. J. Nat. Appl. Sci. August 2024;28(2):96-104. doi:10.19113/sdufenbed.1345637
Chicago Aksoy Pehlivanoglu, Seval, and Özgür Polat. “Characterization and Optoelectronic Effects of Iridium Doped ZnO Thin Films for Heterojunction Applications”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28, no. 2 (August 2024): 96-104. https://doi.org/10.19113/sdufenbed.1345637.
EndNote Aksoy Pehlivanoglu S, Polat Ö (August 1, 2024) Characterization and Optoelectronic Effects of Iridium Doped ZnO Thin Films for Heterojunction Applications. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28 2 96–104.
IEEE S. Aksoy Pehlivanoglu and Ö. Polat, “Characterization and Optoelectronic Effects of Iridium Doped ZnO Thin Films for Heterojunction Applications”, J. Nat. Appl. Sci., vol. 28, no. 2, pp. 96–104, 2024, doi: 10.19113/sdufenbed.1345637.
ISNAD Aksoy Pehlivanoglu, Seval - Polat, Özgür. “Characterization and Optoelectronic Effects of Iridium Doped ZnO Thin Films for Heterojunction Applications”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28/2 (August 2024), 96-104. https://doi.org/10.19113/sdufenbed.1345637.
JAMA Aksoy Pehlivanoglu S, Polat Ö. Characterization and Optoelectronic Effects of Iridium Doped ZnO Thin Films for Heterojunction Applications. J. Nat. Appl. Sci. 2024;28:96–104.
MLA Aksoy Pehlivanoglu, Seval and Özgür Polat. “Characterization and Optoelectronic Effects of Iridium Doped ZnO Thin Films for Heterojunction Applications”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 28, no. 2, 2024, pp. 96-104, doi:10.19113/sdufenbed.1345637.
Vancouver Aksoy Pehlivanoglu S, Polat Ö. Characterization and Optoelectronic Effects of Iridium Doped ZnO Thin Films for Heterojunction Applications. J. Nat. Appl. Sci. 2024;28(2):96-104.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.