The isomorphism theorems for crossed squares of commutative algebras, which arise when the crossed modules of algebras are given an extra dimension, are the main subject of this paper. The definition of crossed squares of commutative algebras is given in this context, encompassing ideas like the crossed square ideal, image, and quotient crossed squares, as well as the kernel for crossed square morphisms. The study discusses the way how isomorphism theorems are applied to these structures and offers detailed proofs for this framework. Moreover, some necessary concepts such as quotient crossed squares, which were not previously specified in these structures, are also presented, and some basic properties are examined. The study provides opportunities for possible generalization to a number of different structures, including crossed n-cubes.
Cebirlerin çaprazlanmış modüllerine ek bir boyut daha eklendiğinde ortaya çıkan değişmeli cebirlerin çaprazlanmış kareleri için izomorfizm teoremleri bu makalenin ana konusunu teşkil etmektedir. Bu bağlamda, çapraz kare ideal, görüntü ve bölüm çapraz kareleri gibi kavramların yanı sıra çaprazlanmış kare morfizmleri için çekirdek kavramını da kapsayan değişmeli cebirlerin çaprazlanmış karelerinin tanımı verilmiştir. Çalışma, izomorfizm teoremlerinin bu yapılara nasıl uygulandığını tartışmakta ve bu çerçeve için ayrıntılı kanıtlar sunmaktadır. Ayrıca, daha önce bu yapılarda tanımlanmamış olan bölüm çaprazlanmış kareleri gibi bazı gerekli kavramlar da sunulmakta ve bunların bazı temel özellikleri incelenmektedir. Bu çalışma, çaprazlanmış n-küpler de dahil olmak üzere bir dizi farklı yapıya olası genelleştirme fırsatları sunmaktadır.
Primary Language | English |
---|---|
Subjects | Algebra and Number Theory |
Journal Section | Articles |
Authors | |
Publication Date | August 23, 2024 |
Submission Date | May 20, 2024 |
Acceptance Date | June 28, 2024 |
Published in Issue | Year 2024 Volume: 28 Issue: 2 |
e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688
All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.