Research Article
BibTex RIS Cite

EA Şarj İstasyonu için İzolesiz Çift Yönlü DA-DA Dönüştürücü Tasarımı ve Düşük Güçlü Uygulaması

Year 2024, Volume: 28 Issue: 2, 197 - 206, 23.08.2024
https://doi.org/10.19113/sdufenbed.1496941

Abstract

Günümüzde elektrikli araçların sayısı arttıkça şarjın şebeke üzerindeki olumsuz etkisi büyük bir endişe kaynağı haline geliyor. Bu sorunu çözmek için V2G, V2H ve V2V gibi şarj topolojileri üzerinde çalışılmaktadır. Bu bağlamda en kritik konu uygun altyapı ve ekipmanların tasarlanması ve kullanılmasıdır. Bu çalışmada öncelikle DA şarj istasyonlarına uygun, düşük maliyetli ve yüksek verimli, izolasyonsuz çift yönlü bir DA-DA dönüştürücü tasarlanmıştır. Tasarlanan dönüştürücü hem analitik yöntemlerle hem de düşük güçlerde çalıştırılarak analiz edilmiştir. İkinci olarak, tasarlanan bu dönüştürücüler kullanılarak V2V ve V2H topolojilerinin gerçek dünyada uygulanması gerçekleştirildi. Uygulama çalışmasında bu dönüştürücülerden 4 tanesi şarj ünitesi olarak kullanılarak DA şarj istasyonu modeli oluşturulmuştur. Tasarlanan şarj istasyonunun 90 dakikalık çalışması kural tabanlı bir algoritmaya göre gerçekleştirilmiştir. Buna göre tasarlanan izolasyonsuz çift yönlü DA-DA dönüştürücünün veriminin %95 olduğu gösterilmiştir. Ayrıca, gerçek dünya uygulamasında V2V topolojisi kullanılarak EV yükünün %54.16'sının yoğun olmayan zaman dilimine kaydırılabileceği kanıtlanmıştır. Sonuçlara göre tasarlanan dönüştürücünün izoleli ve yüksek güçlü versiyonunun şarj istasyonları için uygun olduğu anlaşılmıştır.

Ethical Statement

Bu çalışma (BAP Proje Numarası: FDK-2021-7261) Gazi Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından desteklenmiştir.

Supporting Institution

Gazi Üniversitesi Bilimsel Araştırma Projeleri (BAP) Birimi

Project Number

FDK-2021-7261

References

  • [1] Üstünsoy, F., Sayan, H.H. 2021. Real-time realization of network integration of electric vehicles with a unique balancing strategy. Electrical Engineering, 103, 2647–2660.
  • [2] Yildiz, S., Sayan, H.H. 2024. LCL Filter Design and Simulation for Vehicle-To-Grid (V2G) Applications. In: IMSS 2023.
  • [3] Mumtaz, F., Yahaya, N. Z., Meraj, S. T., Singh, B., Kannan, R., Ibrahim, O. 2021. Review on non-isolated DC-DC converters and their control techniques for renewable energy applications. Ain Shams Engineering Journal, 12(4), 3747-3763.
  • [4] Sahbani, A., Cherif, K., Saad, K. B. 2020. Multiphase Interleaved Bidirectional DC-DC Converter for Electric Vehicles and Smart Grid Applications. International Journal of Smart Grid-ijSmartGrid, 4(2), 80-87.
  • [5] Rezaii, R., Nilian, M., Safayatullah, M., Ghosh, S., & Batarseh, I. 2021. A Bidirectional DC-DC Converter with High Conversion Ratios for the Electrical Vehicle Application. In IECON 2021–47th Annual Conference of the IEEE Industrial Electronics Society, 1-6.
  • [6] Elserougi, A., Abdelsalam, I., Massoud, A., Ahmed, S. 2019. A bidirectional non-isolated hybrid modular DC–DC converter with zero-voltage switching. Electric Power Systems Research, 167, 277-289.
  • [7] Hernandez, F. D., Samanbakhsh, R., Mohammadi, P., Ibanez, F. M. 2021. A dual-input high-gain bidirectional DC/DC converter for hybrid energy storage systems in DC grid applications. IEEE Access, 9, 164006-164016.
  • [8] Suresh, K., Bharatiraja, C., Chellammal, N., Tariq, M., Chakrabortty, R. K., Ryan, M. J., Alamri, B. 2021. A multifunctional non-isolated dual input-dual output converter for electric vehicle applications. IEEE Access, 9, 64445-64460.
  • [9] Al-Obaidi, N. A., Abbas, R. A., & Khazaal, H. F. 2022. A review of non-isolated bidirectional DC-DC converters for hybrid energy storage system. In 2022 5th International Conference on Engineering Technology and its Applications (IICETA), 248-253.
  • [10] Pramanik, R., Pati, B. B. 2023. Modelling and control of a non-isolated half-bridge bidirectional DC-DC converter with an energy management topology applicable with EV/HEV. Journal of King Saud University-Engineering Sciences, 35(2), 116-122.
  • [11] Varesi, K., Hosseini, S. H., Sabahi, M., Babaei, E., Vosoughi, N. 2017. Performance and design analysis of an improved non‐isolated multiple input buck DC–DC converter. IET Power Electronics, 10(9), 1034-1045.
  • [12] Shayeghi, H., Pourjafar, S., Hashemzadeh, S. M. 2021. A switching capacitor based multi‐port bidirectional DC–DC converter. IET Power Electronics, 14(9), 1622-1636.
  • [13] Punna, S., Manthati, U. B., Chirayarukil Raveendran, A. 2021. Modeling, analysis, and design of novel control scheme for two‐input bidirectional DC‐DC converter for HESS in DC microgrid applications. International Transactions on Electrical Energy Systems, 31(10), e12774.
  • [14] Saadatizadeh, Z., Chavoshipour Heris, P., Sabahi, M., Tarafdar Hagh, M., Maalandish, M. 2018. A new non‐isolated free ripple input current bidirectional DC‐DC converter with capability of zero voltage switching. International Journal of Circuit Theory and Applications, 46(3), 519-542.
  • [15] Qi, X., Wang, Y., Wang, Y., Chen, Z. 2021. Optimization of centralized equalization systems based on an integrated cascade bidirectional DC–DC converter. IEEE Transactions on Industrial Electronics, 69(1), 249-259.
  • [16] Khan, M. A., Ahmed, A., Husain, I., Sozer, Y., Badawy, M. 2015. Performance analysis of bidirectional DC–DC converters for electric vehicles. IEEE transactions on industry applications, 51(4), 3442-3452.
  • [17] De Melo, R. R., Tofoli, F. L., Daher, S., Antunes, F. L. M. 2020. Interleaved bidirectional DC–DC converter for electric vehicle applications based on multiple energy storage devices. Electrical Engineering, 102, 2011-2023.
  • [18] Bahravar, S., Abbaszadeh, K., Olamaei, J. 2021. High step-up non-isolated DC–DC converter using diode–capacitor cells. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 45, 81-96.
  • [19] Cheng, X. F., Liu, C., Wang, D., Zhang, Y. 2021. State-of-the-art review on soft-switching technologies for non-isolated DC-DC converters. IEEE Access, 9, 119235-119249.
  • [20] Dutta, S., Rathore, A., Khadkikar, K. V., Zeineldin, H. 2021. Single-Phase Bridgeless Cuk-Derived DC-DC Converter for Vehicle-to-Vehicle Charge Transfer. IEEE Transportation Electrification Conference (ITEC-India), New Delhi, India, 1-6.
  • [21] Artal-Sevil, J. S., Ballestín-Bernad, V., Anzola, J., Domínguez-Navarro, J. A. 2021. High-Gain Non-isolated DC-DC Partial-Power Converter for Automotive Applications. IEEE Vehicle Power and Propulsion Conference (VPPC), Gijon, Spain, 1-6.
  • [22] Halder, T. 2023. Modelling and Simulation of a Bi-Directional DC to DC Converter System. 2nd Edition of IEEE Delhi Section Flagship Conference (DELCON), Rajpura, India, 1-6.
  • [23] Camara, M.B., Gualous, H., Gustin, F. 2010. DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applicationspolynomial control strategy. IEEE Trans. Ind. Elect. 57 (2), 587–597.

Non-Isolated Bidirectional DC-DC Converter Design And Low Power Application for EV Charging Station

Year 2024, Volume: 28 Issue: 2, 197 - 206, 23.08.2024
https://doi.org/10.19113/sdufenbed.1496941

Abstract

Today, the negative impact of charging on the grid is becoming a major concern as the number of electric vehicles increases. The charging topologies such as V2G, V2H and V2V are being studied to solve this problem. The most critical issue in this context is the design and use of appropriate infrastructure and equipment. In this study, firstly a low-cost and high-efficiency non-isolated bidirectional DC-DC converter suitable for DC charging stations is designed. The designed converter was analysed both by analytical methods and by operating at low powers. Secondly, a real-world implementation of V2V and V2H topologies has been performed using these designed converters. In the application study, a DC charging station model was created by using 4 of these converters as charging units. The 90-minute operation of the designed charging station was realised according to a rule-based algorithm. Accordingly, it has been shown that the efficiency of the non-isolated bidirectional DC-DC converter designed is 95%. It is also proved that 54.16% of the EVs load can be shifted to off-peak time period using V2V topology in real world application. According to the results, it is understood that the isolated and high-power version of the designed converter is suitable for charging stations.

Ethical Statement

Funding: This study (BAP Project Number: FDK-2021-7261) was supported by Gazi University Scientific Research Projects Unit.

Supporting Institution

Gazi University Scientific Research Projects Unit

Project Number

FDK-2021-7261

References

  • [1] Üstünsoy, F., Sayan, H.H. 2021. Real-time realization of network integration of electric vehicles with a unique balancing strategy. Electrical Engineering, 103, 2647–2660.
  • [2] Yildiz, S., Sayan, H.H. 2024. LCL Filter Design and Simulation for Vehicle-To-Grid (V2G) Applications. In: IMSS 2023.
  • [3] Mumtaz, F., Yahaya, N. Z., Meraj, S. T., Singh, B., Kannan, R., Ibrahim, O. 2021. Review on non-isolated DC-DC converters and their control techniques for renewable energy applications. Ain Shams Engineering Journal, 12(4), 3747-3763.
  • [4] Sahbani, A., Cherif, K., Saad, K. B. 2020. Multiphase Interleaved Bidirectional DC-DC Converter for Electric Vehicles and Smart Grid Applications. International Journal of Smart Grid-ijSmartGrid, 4(2), 80-87.
  • [5] Rezaii, R., Nilian, M., Safayatullah, M., Ghosh, S., & Batarseh, I. 2021. A Bidirectional DC-DC Converter with High Conversion Ratios for the Electrical Vehicle Application. In IECON 2021–47th Annual Conference of the IEEE Industrial Electronics Society, 1-6.
  • [6] Elserougi, A., Abdelsalam, I., Massoud, A., Ahmed, S. 2019. A bidirectional non-isolated hybrid modular DC–DC converter with zero-voltage switching. Electric Power Systems Research, 167, 277-289.
  • [7] Hernandez, F. D., Samanbakhsh, R., Mohammadi, P., Ibanez, F. M. 2021. A dual-input high-gain bidirectional DC/DC converter for hybrid energy storage systems in DC grid applications. IEEE Access, 9, 164006-164016.
  • [8] Suresh, K., Bharatiraja, C., Chellammal, N., Tariq, M., Chakrabortty, R. K., Ryan, M. J., Alamri, B. 2021. A multifunctional non-isolated dual input-dual output converter for electric vehicle applications. IEEE Access, 9, 64445-64460.
  • [9] Al-Obaidi, N. A., Abbas, R. A., & Khazaal, H. F. 2022. A review of non-isolated bidirectional DC-DC converters for hybrid energy storage system. In 2022 5th International Conference on Engineering Technology and its Applications (IICETA), 248-253.
  • [10] Pramanik, R., Pati, B. B. 2023. Modelling and control of a non-isolated half-bridge bidirectional DC-DC converter with an energy management topology applicable with EV/HEV. Journal of King Saud University-Engineering Sciences, 35(2), 116-122.
  • [11] Varesi, K., Hosseini, S. H., Sabahi, M., Babaei, E., Vosoughi, N. 2017. Performance and design analysis of an improved non‐isolated multiple input buck DC–DC converter. IET Power Electronics, 10(9), 1034-1045.
  • [12] Shayeghi, H., Pourjafar, S., Hashemzadeh, S. M. 2021. A switching capacitor based multi‐port bidirectional DC–DC converter. IET Power Electronics, 14(9), 1622-1636.
  • [13] Punna, S., Manthati, U. B., Chirayarukil Raveendran, A. 2021. Modeling, analysis, and design of novel control scheme for two‐input bidirectional DC‐DC converter for HESS in DC microgrid applications. International Transactions on Electrical Energy Systems, 31(10), e12774.
  • [14] Saadatizadeh, Z., Chavoshipour Heris, P., Sabahi, M., Tarafdar Hagh, M., Maalandish, M. 2018. A new non‐isolated free ripple input current bidirectional DC‐DC converter with capability of zero voltage switching. International Journal of Circuit Theory and Applications, 46(3), 519-542.
  • [15] Qi, X., Wang, Y., Wang, Y., Chen, Z. 2021. Optimization of centralized equalization systems based on an integrated cascade bidirectional DC–DC converter. IEEE Transactions on Industrial Electronics, 69(1), 249-259.
  • [16] Khan, M. A., Ahmed, A., Husain, I., Sozer, Y., Badawy, M. 2015. Performance analysis of bidirectional DC–DC converters for electric vehicles. IEEE transactions on industry applications, 51(4), 3442-3452.
  • [17] De Melo, R. R., Tofoli, F. L., Daher, S., Antunes, F. L. M. 2020. Interleaved bidirectional DC–DC converter for electric vehicle applications based on multiple energy storage devices. Electrical Engineering, 102, 2011-2023.
  • [18] Bahravar, S., Abbaszadeh, K., Olamaei, J. 2021. High step-up non-isolated DC–DC converter using diode–capacitor cells. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 45, 81-96.
  • [19] Cheng, X. F., Liu, C., Wang, D., Zhang, Y. 2021. State-of-the-art review on soft-switching technologies for non-isolated DC-DC converters. IEEE Access, 9, 119235-119249.
  • [20] Dutta, S., Rathore, A., Khadkikar, K. V., Zeineldin, H. 2021. Single-Phase Bridgeless Cuk-Derived DC-DC Converter for Vehicle-to-Vehicle Charge Transfer. IEEE Transportation Electrification Conference (ITEC-India), New Delhi, India, 1-6.
  • [21] Artal-Sevil, J. S., Ballestín-Bernad, V., Anzola, J., Domínguez-Navarro, J. A. 2021. High-Gain Non-isolated DC-DC Partial-Power Converter for Automotive Applications. IEEE Vehicle Power and Propulsion Conference (VPPC), Gijon, Spain, 1-6.
  • [22] Halder, T. 2023. Modelling and Simulation of a Bi-Directional DC to DC Converter System. 2nd Edition of IEEE Delhi Section Flagship Conference (DELCON), Rajpura, India, 1-6.
  • [23] Camara, M.B., Gualous, H., Gustin, F. 2010. DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applicationspolynomial control strategy. IEEE Trans. Ind. Elect. 57 (2), 587–597.
There are 23 citations in total.

Details

Primary Language English
Subjects Power Electronics
Journal Section Articles
Authors

Furkan Üstünsoy 0000-0003-3087-895X

Hasan Hüseyin Sayan 0000-0002-0692-172X

Sadık Yıldız 0000-0003-4733-4684

Project Number FDK-2021-7261
Publication Date August 23, 2024
Submission Date June 6, 2024
Acceptance Date July 10, 2024
Published in Issue Year 2024 Volume: 28 Issue: 2

Cite

APA Üstünsoy, F., Sayan, H. H., & Yıldız, S. (2024). Non-Isolated Bidirectional DC-DC Converter Design And Low Power Application for EV Charging Station. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(2), 197-206. https://doi.org/10.19113/sdufenbed.1496941
AMA Üstünsoy F, Sayan HH, Yıldız S. Non-Isolated Bidirectional DC-DC Converter Design And Low Power Application for EV Charging Station. J. Nat. Appl. Sci. August 2024;28(2):197-206. doi:10.19113/sdufenbed.1496941
Chicago Üstünsoy, Furkan, Hasan Hüseyin Sayan, and Sadık Yıldız. “Non-Isolated Bidirectional DC-DC Converter Design And Low Power Application for EV Charging Station”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28, no. 2 (August 2024): 197-206. https://doi.org/10.19113/sdufenbed.1496941.
EndNote Üstünsoy F, Sayan HH, Yıldız S (August 1, 2024) Non-Isolated Bidirectional DC-DC Converter Design And Low Power Application for EV Charging Station. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28 2 197–206.
IEEE F. Üstünsoy, H. H. Sayan, and S. Yıldız, “Non-Isolated Bidirectional DC-DC Converter Design And Low Power Application for EV Charging Station”, J. Nat. Appl. Sci., vol. 28, no. 2, pp. 197–206, 2024, doi: 10.19113/sdufenbed.1496941.
ISNAD Üstünsoy, Furkan et al. “Non-Isolated Bidirectional DC-DC Converter Design And Low Power Application for EV Charging Station”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28/2 (August 2024), 197-206. https://doi.org/10.19113/sdufenbed.1496941.
JAMA Üstünsoy F, Sayan HH, Yıldız S. Non-Isolated Bidirectional DC-DC Converter Design And Low Power Application for EV Charging Station. J. Nat. Appl. Sci. 2024;28:197–206.
MLA Üstünsoy, Furkan et al. “Non-Isolated Bidirectional DC-DC Converter Design And Low Power Application for EV Charging Station”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 28, no. 2, 2024, pp. 197-06, doi:10.19113/sdufenbed.1496941.
Vancouver Üstünsoy F, Sayan HH, Yıldız S. Non-Isolated Bidirectional DC-DC Converter Design And Low Power Application for EV Charging Station. J. Nat. Appl. Sci. 2024;28(2):197-206.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.