Research Article
BibTex RIS Cite

Rotenon ile İndüklenen İn Vitro Parkinson Hastalığı Modelinde Glukagon Benzeri Peptid-1 Analoğu Ekzenatidin Nöron Sağkalımına Etkisi

Year 2019, Volume: 10 Issue: 4, 362 - 368, 13.12.2019

Abstract

Parkinson hastalığı (PH), beyinde substansiya
nigrada bulunan dopaminerjik nöronların hasarı ve buna eşlik eden striatumda
dopamin eksikliği sonucunda gelişen, bradikinezi, rijidite ve postural
instabilite ile seyreden kronik ve ilerleyici bir nörodejeneratif hastalıktır.
Çalışmalar genetik ve yaşlanma, pestisid ve ağır metallere maruziyet gibi
çevresel faktörlerin hastalığın etiyopatogenezinde önemli role sahip
olabileceğine işaret etmektedir. Rotenon, deneysel PH modeli oluşturmak ve hastalığın
mekanizmasını araştırmak amacıyla kullanılan organik bir pestisidtir. Bu
çalışmada amacımız insan nöroblatoma hücre serisi olan SH-SY5Y hücrelerinde
rotenonun toksik etkisini ve aynı zamanda GLP-1 analoğu olan ekzenatidin
rotenon nörotoksisitesine karşı koruyucu etkili olup olmadığını araştırmaktır.
Bu amaçla SH-SY5Y hücre kültürleri çeşitli dozlardaki rotenon ile 24 saat
boyunca inkübe edildi. Ekzenatidin koruyucu etkisi yine farklı dozlardaki
ekzenatidin rotenon ile birlikte kültür medyumuna eklenmesi ve 24 saat inkübe
edilmesi ile incelendi. Rotenon ve ekzenatidin etkileri hücre canlılığı,
klonojenik aktivite, morfolojik inceleme ve apopitotik hücre ölümünün
değerlendirilmesi ile belirlendi. Sonuçlarımız rotenon eklenen gruplarda doza
bağlı olarak ve anlamlı düzeyde hücre canlılığının ve klonojenik aktivitenin
azaldığını gösterdi. Ayrıca rotenon eklenen hücrelerde belirgin olarak
morfolojik değişim olduğu ve apopitotik hücre ölümünde artış olduğu gözlendi.
Ortama ekzenatidin eklenmesi ise hücre canlılığının ve klonojenik aktivitenin
korunmasına, apopitotik hücre ölümünde azalmaya neden oldu. Sonuç olarak;
bulgularımız rotenonun SH-SY5Y hücrelerinde nörotoksik etkilerinin olduğunu ve in vitro PH modeli oluşturmak amacıyla
kullanılabileceğini gösterdi. Ayrıca, sonuçlarımız ekzenatidin nöronal
hücrelerde rotenon ile indüklenen toksisiteye karşı nöroprotektif etkiye sahip
olabileceğini gösterdi.

Supporting Institution

Ege Üniversitesi Bilimsel Araştırma Projeleri

Project Number

16-TIP-056

Thanks

Bu çalışma Ege Üniversitesi Bilimsel Araştırma Projeleri’nin 16-TIP-056 no’lu projesi kapsamında desteklenmiştir.

References

  • de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol 2006; 5(6): 525-535.
  • Akbayır E, Şen M, Ay U, Şenyer S, Tüzün E, Küçükali C. Parkinson hastalığının etyopatogenezi. Deneysel Tıp Dergisi 2017; 7(13): 2-22.
  • Shulman JM, De Jager PL, Feany MB. Parkinson’s disease: genetics and pathogenesis. Annu Rev Pathol 2011; 6: 193-222.
  • Lill CM. Genetics of Parkinson’s disease. Mol Cell Probes 2016; 30 (6): 386-396.
  • Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. Oxford University Press. Oxford, UK; 4th ed. 2007; 440-613.
  • Cannon JR, Greenamyre JT. The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol Sci 2011; 124: 225-250.
  • Greenamyre JT, Betarbet R, Sherer TB. The rotenone model of Parkinson's disease: genes, environment and mitochondria. Parkinsonism Relat Disord 2003; 9: 59-64.
  • Betarbet R, Sherer TB, Greenamyre JT. Animal models of Parkinson’s disease. Bioessays 2002; 24: 308-318.
  • Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT. A highly reproducible rotenone model of Parkinson's disease. Neurobiol Dis 2009; 34: 279-290.
  • Alam M, Schmidt WJ. Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res 2002; 136: 317-324.
  • Hölscher C. Incretin analogues that have been developed to treat type 2 diabetes hold promise as a novel treatment strategy for Alzheimer's disease. Recent Patents on CNS Drug Discovery 2010; 5(2): 109-117.
  • Hölscher C. The incretin hormones glucagon like peptide 1 and glucose-dependent insulinotropic polypeptide are neuroprotective in mouse models of Alzheimer's disease. Alzheimer's and Dementia 2014; 10(1 Suppl): S47-54.
  • Hamilton A, Hölscher C. Receptors for the incretin glucagon-like peptide-1 are expressed on neurons in the central nervous system. Neuroreport 2009; 20(13): 1161-1166.
  • Duarte AI, Candeias E, Correia SC, Santos RX, Carvalho C, Cardoso S, Plácido A, Santos MS, Oliveira CR, Moreira PI. Crosstalk between diabetes and brain: glucagon-like peptide-1 mimetics as a promising therapy against neurodegeneration. Biochimica et Biophysica Acta 2013; 1832(4): 527-541.
  • Gault VA, Hölscher C. GLP-1 agonists facilitate hippocampal LTP and reverse the impairment of LTP induced by beta-amyloid. European Journal of Pharmacology 2008; 587(1-3): 112-127.
  • Gault VA, Hölscher C. Protease-resistant glucose-dependent insulinotropic polypeptide agonists facilitate hippocampal LTP and reverse the impairment of LTP induced by beta-amyloid. Journal of Neurophysiology 2008; 99(4): 1590-1595.
  • Velmurugan K, Bouchard R, Mahaffey G, Pugazhenthi S. Neuroprotective actions of glucagon-like peptide-1 in differentiated human neuroprogenitor cells. Journal of Neurochemistry 2012; 123(6): 919-931.
  • Khalilnezhad A, Taskiran D. The investigation of protective effects of glucagon-like peptide-1 (GLP-1) analogue exenatide against glucose and fructose-induced neurotoxicity. Int J Neurosci 2019; 129(5): 481-491.
  • Taskiran D, Evren V. Estradiol protects adipose tissue-derived stem cells against H(2)O(2)-induced toxicity. Journal of Biochemistry and Molecular Toxicology 2012; 26(8): 301-307.
  • Tekedereli I, Akar U, Lopez-Berestein G, Ozpolat B. Therapeutic silencing of nanoliposomal EF2K by siRNA in primary and metastic breast cancer in animal models. PLoS One 2012; 7(7): e41171.
  • Newhouse K, Hsuan SL, Chang SH, Cai B, Wang Y, Xia Z. Rotenone- induced apoptosis is mediated by p38 and JNK MAP kinases in human dopaminergic SH-SY5Y cells. Toxicol Sci 2004; 79: 137-146.
  • Radad K, Rausch WD, Gille G. Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration. Neurochem Int 2006; 49(4): 379-386.
  • Park HJ, Kim HJ. Inhibitory effect of nicardipine on rotenone‑induced apoptosis in SH‑SY5Y human neuroblastoma cells. Mol Med Rep 2013; 7(3): 941-946.
  • Jang W, Kim HJ, Li H, Jo KD, Lee MK, Yang HO. The Neuroprotective effect of erythropoietin on rotenone-induced neurotoxicity in SH-SY5Y cells through the induction of autophagy. Mol Neurobiol 2016; 53(6): 3812-3821.
  • Kimura R, Okouchi M, Fujioka H, Ichiyanagi A, Ryuge F, Mizuno T, Imaeda K, Okayama N, Kamiya Y, Asai K, Joh T. Glucagon-like peptide-1 (GLP-1) protects against methylglyoxal-induced PC12 cell apoptosis through the PI3K/Akt/mTOR/GCLc/redox signaling pathway. Neuroscience 2009; 162(4): 1212-1219.
  • Athauda D, Foltynie T. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson's disease: mechanisms of action. Drug Discov Today 2016; May;21(5): 802-818.
  • Abuirmeileh A, Harkavyi A, Rampersaud N, Lever R, Tadross JA, Bloom SR, Whitton PS. Exendin-4 treatment enhances L-DOPA evoked release of striatal dopamine and decreases dyskinetic movements in the 6-hydoxydopamine lesioned rat. J Pharm Pharmacol 2012; 64(5): 637-643.
  • Liu W, Jalewa J, Sharma M, Li G, Li L, Hölscher C. Neuroprotective effects of lixisenatide and liraglutide in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Neuroscience 2015; 303: 42-50.

Effect of Glucagon like Peptide-1 Analogue Exenatide on Neuron Survival in Rotenone-Induced In Vitro Parkinson's Disease Model

Year 2019, Volume: 10 Issue: 4, 362 - 368, 13.12.2019

Abstract

Parkinson's disease (PD) is one the most common
neurodegenerative disorder characterized by bradykinesia, tremor, rigidity and
postural instability as a result of progressive degeneration of the
dopaminergic neurons in substantia nigra pars compacta (SNc) and dopamine
decrease in the striatum. Accumulating data recommends that combination of
genetic and environmental factors including aging, exposure to pesticides, and
heavy metals may have significant roles in the pathogenesis of PD. Rotenone, an
organic pesticide, is commonly used for investigating the mechanism of neuronal
degeneration in experimental PD models. In the present study, we aimed to
investigate the effects of rotenone on SH-SY5Y human neuroblastoma cells, and
also the neuroprotective effects of exenatide, a GLP-1 analogue, against
rotenone-induced neurotoxicity. Briefly, to induce rotenone-induced
neurotoxicity, SH-SY5Y cells were exposed to various doses of rotenone for 24
hours. To explore the neuroprotective effects of exenatide, different doses of
exenatide were added into the medium with or without rotenone for 24 hours.
Cell viability, clonegenic potential, morphological alterations, and apoptotic
cell death were evaluated. Our results demonstrated a dose-dependent and
significant decrease in cell viability in rotenone-exposed groups. Also,
rotenone-treated group showed significant morphological alterations, decreased
clonogenic potential and increased apoptosis. However, treatment of the cells
with exenatide significantly improved cell viability and clonogenic activity,
and reduced apoptotic cell death. In conclusion, these findings suggested that
rotenone can induce neurotoxicity in neuronal cells and can be used to
establish in vitro PD model. In
addition, exenatide may have neuroprotective effects on neuronal cells against
rotenone-induced neurotoxicity.

Project Number

16-TIP-056

References

  • de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol 2006; 5(6): 525-535.
  • Akbayır E, Şen M, Ay U, Şenyer S, Tüzün E, Küçükali C. Parkinson hastalığının etyopatogenezi. Deneysel Tıp Dergisi 2017; 7(13): 2-22.
  • Shulman JM, De Jager PL, Feany MB. Parkinson’s disease: genetics and pathogenesis. Annu Rev Pathol 2011; 6: 193-222.
  • Lill CM. Genetics of Parkinson’s disease. Mol Cell Probes 2016; 30 (6): 386-396.
  • Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. Oxford University Press. Oxford, UK; 4th ed. 2007; 440-613.
  • Cannon JR, Greenamyre JT. The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol Sci 2011; 124: 225-250.
  • Greenamyre JT, Betarbet R, Sherer TB. The rotenone model of Parkinson's disease: genes, environment and mitochondria. Parkinsonism Relat Disord 2003; 9: 59-64.
  • Betarbet R, Sherer TB, Greenamyre JT. Animal models of Parkinson’s disease. Bioessays 2002; 24: 308-318.
  • Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT. A highly reproducible rotenone model of Parkinson's disease. Neurobiol Dis 2009; 34: 279-290.
  • Alam M, Schmidt WJ. Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res 2002; 136: 317-324.
  • Hölscher C. Incretin analogues that have been developed to treat type 2 diabetes hold promise as a novel treatment strategy for Alzheimer's disease. Recent Patents on CNS Drug Discovery 2010; 5(2): 109-117.
  • Hölscher C. The incretin hormones glucagon like peptide 1 and glucose-dependent insulinotropic polypeptide are neuroprotective in mouse models of Alzheimer's disease. Alzheimer's and Dementia 2014; 10(1 Suppl): S47-54.
  • Hamilton A, Hölscher C. Receptors for the incretin glucagon-like peptide-1 are expressed on neurons in the central nervous system. Neuroreport 2009; 20(13): 1161-1166.
  • Duarte AI, Candeias E, Correia SC, Santos RX, Carvalho C, Cardoso S, Plácido A, Santos MS, Oliveira CR, Moreira PI. Crosstalk between diabetes and brain: glucagon-like peptide-1 mimetics as a promising therapy against neurodegeneration. Biochimica et Biophysica Acta 2013; 1832(4): 527-541.
  • Gault VA, Hölscher C. GLP-1 agonists facilitate hippocampal LTP and reverse the impairment of LTP induced by beta-amyloid. European Journal of Pharmacology 2008; 587(1-3): 112-127.
  • Gault VA, Hölscher C. Protease-resistant glucose-dependent insulinotropic polypeptide agonists facilitate hippocampal LTP and reverse the impairment of LTP induced by beta-amyloid. Journal of Neurophysiology 2008; 99(4): 1590-1595.
  • Velmurugan K, Bouchard R, Mahaffey G, Pugazhenthi S. Neuroprotective actions of glucagon-like peptide-1 in differentiated human neuroprogenitor cells. Journal of Neurochemistry 2012; 123(6): 919-931.
  • Khalilnezhad A, Taskiran D. The investigation of protective effects of glucagon-like peptide-1 (GLP-1) analogue exenatide against glucose and fructose-induced neurotoxicity. Int J Neurosci 2019; 129(5): 481-491.
  • Taskiran D, Evren V. Estradiol protects adipose tissue-derived stem cells against H(2)O(2)-induced toxicity. Journal of Biochemistry and Molecular Toxicology 2012; 26(8): 301-307.
  • Tekedereli I, Akar U, Lopez-Berestein G, Ozpolat B. Therapeutic silencing of nanoliposomal EF2K by siRNA in primary and metastic breast cancer in animal models. PLoS One 2012; 7(7): e41171.
  • Newhouse K, Hsuan SL, Chang SH, Cai B, Wang Y, Xia Z. Rotenone- induced apoptosis is mediated by p38 and JNK MAP kinases in human dopaminergic SH-SY5Y cells. Toxicol Sci 2004; 79: 137-146.
  • Radad K, Rausch WD, Gille G. Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration. Neurochem Int 2006; 49(4): 379-386.
  • Park HJ, Kim HJ. Inhibitory effect of nicardipine on rotenone‑induced apoptosis in SH‑SY5Y human neuroblastoma cells. Mol Med Rep 2013; 7(3): 941-946.
  • Jang W, Kim HJ, Li H, Jo KD, Lee MK, Yang HO. The Neuroprotective effect of erythropoietin on rotenone-induced neurotoxicity in SH-SY5Y cells through the induction of autophagy. Mol Neurobiol 2016; 53(6): 3812-3821.
  • Kimura R, Okouchi M, Fujioka H, Ichiyanagi A, Ryuge F, Mizuno T, Imaeda K, Okayama N, Kamiya Y, Asai K, Joh T. Glucagon-like peptide-1 (GLP-1) protects against methylglyoxal-induced PC12 cell apoptosis through the PI3K/Akt/mTOR/GCLc/redox signaling pathway. Neuroscience 2009; 162(4): 1212-1219.
  • Athauda D, Foltynie T. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson's disease: mechanisms of action. Drug Discov Today 2016; May;21(5): 802-818.
  • Abuirmeileh A, Harkavyi A, Rampersaud N, Lever R, Tadross JA, Bloom SR, Whitton PS. Exendin-4 treatment enhances L-DOPA evoked release of striatal dopamine and decreases dyskinetic movements in the 6-hydoxydopamine lesioned rat. J Pharm Pharmacol 2012; 64(5): 637-643.
  • Liu W, Jalewa J, Sharma M, Li G, Li L, Hölscher C. Neuroprotective effects of lixisenatide and liraglutide in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Neuroscience 2015; 303: 42-50.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Original Article
Authors

Mümin Alper Erdoğan 0000-0003-0048-444X

Dilek Taşkıran 0000-0002-4505-0939

Project Number 16-TIP-056
Publication Date December 13, 2019
Submission Date July 10, 2019
Published in Issue Year 2019 Volume: 10 Issue: 4

Cite

Vancouver Erdoğan MA, Taşkıran D. Rotenon ile İndüklenen İn Vitro Parkinson Hastalığı Modelinde Glukagon Benzeri Peptid-1 Analoğu Ekzenatidin Nöron Sağkalımına Etkisi. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2019;10(4):362-8.

SDÜ Sağlık Bilimleri Dergisi, makalenin gönderilmesi ve yayınlanması dahil olmak üzere hiçbir aşamada herhangi bir ücret talep etmemektedir. Dergimiz, bilimsel araştırmaları okuyucuya ücretsiz sunmanın bilginin küresel paylaşımını artıracağı ilkesini benimseyerek, içeriğine anında açık erişim sağlamaktadır.