Research Article
BibTex RIS Cite

Effect of thin-layer graphene doping on the color and surface hardness of dental ceramics

Year 2020, Volume: 11 Issue: 1, 65 - 70, 03.03.2020

Abstract

Abstract

Objective: The most common cause of clinical failures in all-ceramic dental restorations is crack formation in the veneering ceramic. The aim of this study was to determine whether graphene doping would change the characteristics of hardness and discoloration of the ceramic veneer surface.

Material-Method:Thirty disk-shaped cores (10 mm in diameter and 0.8 mm in thickness) were prepared. Three different ceramic systems, IPS Empress (E) (Ivoclar Vivadent, Schaan, Liechtenstein), IPS e.max Press (EP)(Ivoclar Vivadent, Schaan, Liechtenstein), and Turkom Cera (TC) (Turcom-Ceramic SDN-BHD, Kuala Lumpur, Malaysia) were tested, each with n=8. The Vickers hardness and color difference (ΔE) values were measured before and after doping with graphene. Surface analysis was performed with XRD, XPS, and SEM. The Wilcoxon signed-rank test was performed to compare hardness values. The Kruskal-Wallis test was performed to compare ∆E values among all groups. The Kruskal-Wallis one-way ANOVA was used for the post hoc tests after the Kruskal-Wallis test (α=.05).

Results: A significant difference was found among the groups and the mean values of ∆E (p = 0.002). According to the post hoc test results, this difference was found between TC and E groups (p = 0.002). Although graphene doping increased hardness significantly in group E, it was also found to decrease in group TC. The mean ∆E values indicated clinically noticeable (over the limit of 3.7) color change in all groups.

Conclusions: Graphene doping may change the surface hardness of dental ceramics depending on the content of the ceramic. Similarly, depending on the content of the ceramic, it may affect its color to varying degrees. Graphene doping increased surface hardness only in group E but negatively affected the color of ceramic. Its application could be useful in the palatal region. 

Keywords: Dentalceramics; Color; Doping; Hardness

References

  • REFERENCES1. Wall JG, Cipra DL. Alternative crown systems. Is the metal-ceramic crown always the restoration of choice? Dent Clin North Am 1992;36:765-82.2. Conrad HJ, Seong WJ, Pesun IJ. Current ceramic materials and systems with clinical recommendations: a systematic review. J Prosthet Dent 2007;98:389-404.3. Dündar M, Özcan M, Gökçe B, Çömlekoğlu E, Leite F, Valandro LF. Comparison of two bond strength testing methodologies for bilayered all-ceramics. Dent Mater 2007;23:630-636.4. Della Bona A, Kelly JR. The clinical success of all-ceramic restorations. J Am Dent Assoc 2008;139:8-13.5. Yin H, Qi HJ, Fan F, Zhu T, Wang B, Wei Y. Griffith criterion for brittle fracture in graphene. Nano Lett 2015;15:1918-1924.6. Jang D, Meza L.R, Greer F, Greer J.R. Fabrication and deformation of three -dimensional hollow ceramic nanostructures. Nat Mater 2013;12:893-898.7. G. Zhao, C. Huang, H. Liu, B. Zou, H. Zhu, J. Wang, A study on in-situ synthesis of TiB2–SiC ceramic composites by reactive hot pressing. Ceram Int 2014;40:2305-2313.8. G. Wang, Z. Lu, H. Zreiqat, Bioceramics for skeletal bone regeneration, in: K. Mallick (Ed.), Bone Substitute Biomaterials, Woodhead Publishing, 2014, pp. 180-216.9. C. Yatongchai, L.M. Placek, D.J. Curran, M.R. Towler, A.W. Wren, Investigating the addition of SiO2–CaO–ZnO–Na2O–TiO2 bioactive glass to hydroxyapatite: characterization, mechanical properties and bioactivity, J. Biomater. Appl. 30 (5) (2015) 495-511.10. Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair. Gao C, Feng P, Peng S, Shuai C. Acta Biomater. 2017 Oct 1;61:1-20. doi: 10.1016/ Review. 11. L. Zhang, X. Zhang, Y. Chen, J. Su, W. Liu, T. Zhang, F. Qi, Y. Wang, Interfacial stress transfer in a graphene nanosheet toughened hydroxyapatite composite, Appl. Phys. Lett. 105 (16) (2014) 161908.12. Graphene for the development of the next-generation of biocomposites for dental and medical applications. Xie H, Cao T, Rodríguez-Lozano FJ, Luong-Van EK, Rosa V. Dent Mater. 2017 Jul;33(7):765-774. doi: 10.1016/ Review.13. L. Zhang, W. Liu, C. Yue, T. Zhang, P. Li, Z. Xing, Y. Chen, A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility, Carbon 61 (11) (2013) 105-115.14. K. Yang, S. Zhang, G. Zhang, X. Sun, S.T. Lee, Z. Liu, Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy, Nano Lett. 10 (9) (2010) 3318-3323.15. M. Wojtoniszak, X. Chen, R.J. Kalenczuk, A. Wajda, J. Łapczuk, M. Kurzewski,M. Drozdzik, P.K. Chu, E. Borowiak-Palen, Synthesis, dispersion, andcytocompatibility of graphene oxide and reduced graphene oxide, Colloids Surf., B 89 (1) (2012) 79–85.16. F. Inam, T. Vo, B.R. Bhat, Structural stability studies of graphene in sintered ceramic nanocomposites, Ceram. Int. 40 (10) (2014) 16227-16233.17. A. Azhari, E. Toyserkani, C. Villain, Additive manufacturing of graphenehydroxyapatite nanocomposite structures, Int. J. Appl. Ceram. Technol. 12 (1)(2015) 8-17.18. Bayindir F, Gozalo-Diaz D, Kim-Pusateri S, Wee AG. Incisal translucency of vital natural unrestored teeth: a clinical study. J Esthet Restor Dent 2012;24:335-343.19. Lim HN, Yu B, Lee YK. Spectroradiometric and spectrophotometric translucency of ceramic materials. J Prosthet Dent 2010;104:239-246.20. Wee AG, Monaghan P, Johnston WM. Variation in color between intended matched shade and fabricated shade of dental porcelain. J Prosthet Dent 2002;87:657-666.21. Seghi RR, Hewlett ER, Kim J. Visual and instrumental colorimetric assessments of small color differences on translucent dental porcelain. J Dent Res 1989;68:1760-1764.22. O'Brien WJ, Groh CL, Boenke KM. A new, small-color-difference equation for dental shades. J Dent Res 1990;69:1762-1764.23. Fontes ST, Fernández MR, de Moura CM, Meireles SS. Color stability of a nanofill composite: effect of different immersion media. J Appl Oral Sci 2009;17:388-391.24. ASTM C1327-08 Standart test method for Vickers indentation hardness of advanced ceramcis. ASTM International; 2009. 25. Shuai C, Feng P, Wu P, Liu Y, Liu X, Lai D et al. A combined nanostructure constructed by graphene and boron nitride nanotubes reinforces ceramic scaffolds. Chem. Eng. J. 2017;313:487-497.26. Çömlekoğlu E, Güngör A, Dündar M, Özcan M, Gökçe B, Artunç C. Güçlendirilmiş dental seramiklerin vickers sertlikleri ve yük altında kırılma davranışları. Cumhuriyet üniv. Derg. 2009;12:2:119-12327. Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics. Dent Mater. 2004; 20(5): 441-8.28. Rizkalla AS, Jones DW. Indentation fracture toughness and dynamic elastic moduli for commercial feldspathic dental porcelain materials. Dent Mater. 2004; 20(2): 198-206.29. Anusavice KJ, Kakar K, Ferree N. Which mechanical and physical testing methods are relevant for predicting the clinical performance of ceramic-based dental prostheses? Clin Oral Implants Res. 2007; 18 Suppl 3: 218-31.30. Kelly RJ. Clinically relevant approach to failure testing of allceramic restorations. J Prosthet Dent 1999; 81(6): 652-61.31. Taskonak B, Mecholsky JJ Jr, Anusavice KJ. Fracture surface analysis of clinically failed fixed partial dentures. J Dent Res. 2006; 85(3): 277-81.32. Shuai C, Feng P, Wu P, Liu Y, Liu X, Lai D et al. A combined nanostructure constructed by graphene and boron nitride nanotubes reinforces ceramic scaffolds. Chem. Eng. J. 2017;313:487-497.33. Ye Y, Graupner U, Krüger R. Deposition of hexagonal boron nitride from N- Trimethylborazine (TMB) for continuous CVD coating of SiBNC fibers. Chemical vapor deposition (2012) 18:7-934. Mallick K. Bone Substitute Biomaterials. 1 st ed. United Kingdom: Woodhead Publishing; 2014. pp. 180–216. 35. Shuai C, Feng P, Wu P, Liu Y, Liu X, Lai D et al. A combined nanostructure constructed by graphene and boron nitride nanotubes reinforces ceramic scaffolds. Chem. Eng. J. 2017;313:487-497.36. Ciofani VR, Menciassi A, Cuschieri A. Cytocompatibility, interactions, and uptake of polyethyleneimine-coated boron nitride nanotubes by living cells: confirmation of their potential for biomedical applications. Biotechnol Bioeng 2008;101:850-858.37. Charlton DG, Roberts HW, Tiba A. Measurement of select physical and mechanical properties of 3 machinable ceramic materials. Quintessence Int 2008;39:573-579.38. Oh WS, Delong R, Anusavice KJ. Factors affecting enamel and ceramic wear: a literature review. J Prosthet Dent 2002;87:451-459.39. Jiang L FA-G, Rose MJ, Lousa A, Gimeno S. Formation of Cubic Boron Nitride by RF magnetron Sputtering. 2002:732-734.40. Goyal K, Singh H, Bhatia R. Experimental investigations of carbon nanotubes reinforcement on properties of ceramic-based composite coating. Journal of the Australian Ceramic Society (2019) 55:315-32241. Gao C, Feng P, Peng S, Shuai C. Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair. Acta Biomater 2017;61:1-20.
Year 2020, Volume: 11 Issue: 1, 65 - 70, 03.03.2020

Abstract

References

  • REFERENCES1. Wall JG, Cipra DL. Alternative crown systems. Is the metal-ceramic crown always the restoration of choice? Dent Clin North Am 1992;36:765-82.2. Conrad HJ, Seong WJ, Pesun IJ. Current ceramic materials and systems with clinical recommendations: a systematic review. J Prosthet Dent 2007;98:389-404.3. Dündar M, Özcan M, Gökçe B, Çömlekoğlu E, Leite F, Valandro LF. Comparison of two bond strength testing methodologies for bilayered all-ceramics. Dent Mater 2007;23:630-636.4. Della Bona A, Kelly JR. The clinical success of all-ceramic restorations. J Am Dent Assoc 2008;139:8-13.5. Yin H, Qi HJ, Fan F, Zhu T, Wang B, Wei Y. Griffith criterion for brittle fracture in graphene. Nano Lett 2015;15:1918-1924.6. Jang D, Meza L.R, Greer F, Greer J.R. Fabrication and deformation of three -dimensional hollow ceramic nanostructures. Nat Mater 2013;12:893-898.7. G. Zhao, C. Huang, H. Liu, B. Zou, H. Zhu, J. Wang, A study on in-situ synthesis of TiB2–SiC ceramic composites by reactive hot pressing. Ceram Int 2014;40:2305-2313.8. G. Wang, Z. Lu, H. Zreiqat, Bioceramics for skeletal bone regeneration, in: K. Mallick (Ed.), Bone Substitute Biomaterials, Woodhead Publishing, 2014, pp. 180-216.9. C. Yatongchai, L.M. Placek, D.J. Curran, M.R. Towler, A.W. Wren, Investigating the addition of SiO2–CaO–ZnO–Na2O–TiO2 bioactive glass to hydroxyapatite: characterization, mechanical properties and bioactivity, J. Biomater. Appl. 30 (5) (2015) 495-511.10. Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair. Gao C, Feng P, Peng S, Shuai C. Acta Biomater. 2017 Oct 1;61:1-20. doi: 10.1016/ Review. 11. L. Zhang, X. Zhang, Y. Chen, J. Su, W. Liu, T. Zhang, F. Qi, Y. Wang, Interfacial stress transfer in a graphene nanosheet toughened hydroxyapatite composite, Appl. Phys. Lett. 105 (16) (2014) 161908.12. Graphene for the development of the next-generation of biocomposites for dental and medical applications. Xie H, Cao T, Rodríguez-Lozano FJ, Luong-Van EK, Rosa V. Dent Mater. 2017 Jul;33(7):765-774. doi: 10.1016/ Review.13. L. Zhang, W. Liu, C. Yue, T. Zhang, P. Li, Z. Xing, Y. Chen, A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility, Carbon 61 (11) (2013) 105-115.14. K. Yang, S. Zhang, G. Zhang, X. Sun, S.T. Lee, Z. Liu, Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy, Nano Lett. 10 (9) (2010) 3318-3323.15. M. Wojtoniszak, X. Chen, R.J. Kalenczuk, A. Wajda, J. Łapczuk, M. Kurzewski,M. Drozdzik, P.K. Chu, E. Borowiak-Palen, Synthesis, dispersion, andcytocompatibility of graphene oxide and reduced graphene oxide, Colloids Surf., B 89 (1) (2012) 79–85.16. F. Inam, T. Vo, B.R. Bhat, Structural stability studies of graphene in sintered ceramic nanocomposites, Ceram. Int. 40 (10) (2014) 16227-16233.17. A. Azhari, E. Toyserkani, C. Villain, Additive manufacturing of graphenehydroxyapatite nanocomposite structures, Int. J. Appl. Ceram. Technol. 12 (1)(2015) 8-17.18. Bayindir F, Gozalo-Diaz D, Kim-Pusateri S, Wee AG. Incisal translucency of vital natural unrestored teeth: a clinical study. J Esthet Restor Dent 2012;24:335-343.19. Lim HN, Yu B, Lee YK. Spectroradiometric and spectrophotometric translucency of ceramic materials. J Prosthet Dent 2010;104:239-246.20. Wee AG, Monaghan P, Johnston WM. Variation in color between intended matched shade and fabricated shade of dental porcelain. J Prosthet Dent 2002;87:657-666.21. Seghi RR, Hewlett ER, Kim J. Visual and instrumental colorimetric assessments of small color differences on translucent dental porcelain. J Dent Res 1989;68:1760-1764.22. O'Brien WJ, Groh CL, Boenke KM. A new, small-color-difference equation for dental shades. J Dent Res 1990;69:1762-1764.23. Fontes ST, Fernández MR, de Moura CM, Meireles SS. Color stability of a nanofill composite: effect of different immersion media. J Appl Oral Sci 2009;17:388-391.24. ASTM C1327-08 Standart test method for Vickers indentation hardness of advanced ceramcis. ASTM International; 2009. 25. Shuai C, Feng P, Wu P, Liu Y, Liu X, Lai D et al. A combined nanostructure constructed by graphene and boron nitride nanotubes reinforces ceramic scaffolds. Chem. Eng. J. 2017;313:487-497.26. Çömlekoğlu E, Güngör A, Dündar M, Özcan M, Gökçe B, Artunç C. Güçlendirilmiş dental seramiklerin vickers sertlikleri ve yük altında kırılma davranışları. Cumhuriyet üniv. Derg. 2009;12:2:119-12327. Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics. Dent Mater. 2004; 20(5): 441-8.28. Rizkalla AS, Jones DW. Indentation fracture toughness and dynamic elastic moduli for commercial feldspathic dental porcelain materials. Dent Mater. 2004; 20(2): 198-206.29. Anusavice KJ, Kakar K, Ferree N. Which mechanical and physical testing methods are relevant for predicting the clinical performance of ceramic-based dental prostheses? Clin Oral Implants Res. 2007; 18 Suppl 3: 218-31.30. Kelly RJ. Clinically relevant approach to failure testing of allceramic restorations. J Prosthet Dent 1999; 81(6): 652-61.31. Taskonak B, Mecholsky JJ Jr, Anusavice KJ. Fracture surface analysis of clinically failed fixed partial dentures. J Dent Res. 2006; 85(3): 277-81.32. Shuai C, Feng P, Wu P, Liu Y, Liu X, Lai D et al. A combined nanostructure constructed by graphene and boron nitride nanotubes reinforces ceramic scaffolds. Chem. Eng. J. 2017;313:487-497.33. Ye Y, Graupner U, Krüger R. Deposition of hexagonal boron nitride from N- Trimethylborazine (TMB) for continuous CVD coating of SiBNC fibers. Chemical vapor deposition (2012) 18:7-934. Mallick K. Bone Substitute Biomaterials. 1 st ed. United Kingdom: Woodhead Publishing; 2014. pp. 180–216. 35. Shuai C, Feng P, Wu P, Liu Y, Liu X, Lai D et al. A combined nanostructure constructed by graphene and boron nitride nanotubes reinforces ceramic scaffolds. Chem. Eng. J. 2017;313:487-497.36. Ciofani VR, Menciassi A, Cuschieri A. Cytocompatibility, interactions, and uptake of polyethyleneimine-coated boron nitride nanotubes by living cells: confirmation of their potential for biomedical applications. Biotechnol Bioeng 2008;101:850-858.37. Charlton DG, Roberts HW, Tiba A. Measurement of select physical and mechanical properties of 3 machinable ceramic materials. Quintessence Int 2008;39:573-579.38. Oh WS, Delong R, Anusavice KJ. Factors affecting enamel and ceramic wear: a literature review. J Prosthet Dent 2002;87:451-459.39. Jiang L FA-G, Rose MJ, Lousa A, Gimeno S. Formation of Cubic Boron Nitride by RF magnetron Sputtering. 2002:732-734.40. Goyal K, Singh H, Bhatia R. Experimental investigations of carbon nanotubes reinforcement on properties of ceramic-based composite coating. Journal of the Australian Ceramic Society (2019) 55:315-32241. Gao C, Feng P, Peng S, Shuai C. Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair. Acta Biomater 2017;61:1-20.
There are 1 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Original Article
Authors

Esra Kul 0000-0003-4750-8955

Funda Bayındır 0000-0001-5699-2879

Publication Date March 3, 2020
Submission Date October 18, 2019
Published in Issue Year 2020 Volume: 11 Issue: 1

Cite

Vancouver Kul E, Bayındır F. Effect of thin-layer graphene doping on the color and surface hardness of dental ceramics. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2020;11(1):65-70.

SDÜ Sağlık Bilimleri Dergisi, makalenin gönderilmesi ve yayınlanması dahil olmak üzere hiçbir aşamada herhangi bir ücret talep etmemektedir. Dergimiz, bilimsel araştırmaları okuyucuya ücretsiz sunmanın bilginin küresel paylaşımını artıracağı ilkesini benimseyerek, içeriğine anında açık erişim sağlamaktadır.